22 research outputs found

    Mechanics and thermodynamics of a new minimal model of the atmosphere

    Get PDF
    The understanding of the fundamental properties of the climate system has long benefitted from the use of simple numerical models able to parsimoniously represent the essential ingredients of its processes. Here, we introduce a new model for the atmosphere that is constructed by supplementing the now-classic Lorenz ’96 one-dimensional lattice model with temperature-like variables. The model features an energy cycle that allows for energy to be converted between the kinetic form and the potential form and for introducing a notion of efficiency. The model’s evolution is controlled by two contributions—a quasi-symplectic and a gradient one, which resemble (yet not conforming to) a metriplectic structure. After investigating the linear stability of the symmetric fixed point, we perform a systematic parametric investigation that allows us to define regions in the parameters space where at steady-state stationary, quasi-periodic, and chaotic motions are realised, and study how the terms responsible for defining the energy budget of the system depend on the external forcing injecting energy in the kinetic and in the potential energy reservoirs. Finally, we find preliminary evidence that the model features extensive chaos. We also introduce a more complex version of the model that is able to accommodate for multiscale dynamics and that features an energy cycle that more closely mimics the one of the Earth’s atmosphere

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    One-pot synthesis of trans

    No full text

    A model study of the coupled biological and physical dynamics in Lake Michigan

    No full text
    A coupled physical and biological model was developed for Lake Michigan. The physical model was the Princeton ocean model (POM) driven directly by observed winds and net surface heat flux. The biological model was an eight-component, phosphorus-limited, lower trophic level food web model, which included phosphate and silicate for nutrients, diatoms and non-diatoms for dominant phytoplankton species, copepods and protozoa for dominant zooplankton species, bacteria and detritus. Driven by observed meteorological forcings, a 1-D modeling experiment showed a controlling of physical processes on the seasonal variation of biological variables in Lake Michigan: diatoms grew significantly in the subsurface region in early summer as stratification developed and then decayed rapidly in the surface mixed layer when silicate supplied from the deep stratified region was reduced as a result of the formation of the thermocline. The non-diatoms subsequently grew in mid and late summer under a limited-phosphate environment and then declined in the fall and winter as a result of the nutrient consumption in the upper eutrophic layer, limitation of nutrients supplied from the deep region and meteorological cooling and wind mixing. The flux estimates suggested that the microbial loop had a significant contribution in the growth of microzooplankton and hence, to the lower-trophic level food web system. The model results agreed with observations, suggesting that the model was robust to capture the basic seasonal variation of the ecosystem in Lake Michigan. © 2002 Published by Elsevier Science B.V
    corecore