4,105 research outputs found
Decomposition Based Search - A theoretical and experimental evaluation
In this paper we present and evaluate a search strategy called Decomposition
Based Search (DBS) which is based on two steps: subproblem generation and
subproblem solution. The generation of subproblems is done through value
ranking and domain splitting. Subdomains are explored so as to generate,
according to the heuristic chosen, promising subproblems first.
We show that two well known search strategies, Limited Discrepancy Search
(LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First
we present a tuning of DBS that visits the same search nodes as IB, but avoids
restarts. Then we compare both theoretically and computationally DBS and LDS
using the same heuristic. We prove that DBS has a higher probability of being
successful than LDS on a comparable number of nodes, under realistic
assumptions. Experiments on a constraint satisfaction problem and an
optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of
Bologna, 200
Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates
We investigate experimentally the force generated by the unsteady vortex formation of low-aspect-ratio normal flat plates with one end free. The objective of this study is to determine the role of the free end, or tip, vortex. Understanding this simple case provides insight into flapping-wing propulsion, which involves the unsteady motion of low-aspect-ratio appendages. As a simple model of a propulsive half-stroke, we consider a rectangular normal flat plate undergoing a translating start-up motion in a towing tank. Digital particle image velocimetry is used to measure multiple perpendicular sections of the flow velocity and vorticity, in order to correlate vortex circulation with the measured plate force. The three-dimensional wake structure is captured using flow visualization. We show that the tip vortex produces a significant maximum in the plate force. Suppressing its formation results in a force minimum. Comparing plates of aspect ratio six and two, the flow is similar in terms of absolute distance from the tip, but evolves faster for aspect ratio two. The plate drag coefficient increases with decreasing aspect ratio
Coronal MHD transport theory and phenomenology
In the presence of a weakly inhomogeneous background, magnetohydrodynamic fluctuations are transported, reflected and at small scales, dissipated. In contrast to orderings appropriate to outer solar wind conditions, here we explore transport in a regime relevant for solar coronal heating and solar wind acceleration, in which effects of the order of the AlfveĢn speed are retained while disregarding the solar wind velocity. We consider the general properties of the transport equations as well as some solutions of interest
Conditions for sustainment of magnetohydrodynamic turbulence driven by AlfveĢn waves
In a number of space and astrophysical plasmas,turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the waveboundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested
MHD turbulence and heating of the open field-line solar corona
This paper discusses the possibility that heating of the solar corona in open field-line regions emanating from coronal holes is due to a nonlinear cascade, driven by low-frequency or quasi-static magnetohydrodynamic fluctuations. Reflection from coronal inhomogeneities plays an important role in sustaining the cascade. Physical and observational constraints are discussed. Kinetic processes that convert cascaded energy into heat must occur in regions of turbulent small-scale reconnection, and may be similar in some respects to ion heating due to intense electron beams observed in the aurora
Anisotropy-based mechanism for zigzag striped patterns in magnetic thin films
In this work we studied a two dimensional ferromagnetic system using Monte
Carlo simulations. Our model includes exchange and dipolar interactions, a
cubic anisotropy term, and uniaxial out-of-plane and in-plane ones. According
to the set of parameters chosen, the model including uniaxial out-of-plane
anisotropy has a ground-state which consists of a canted state with stripes of
opposite out-of-plane magnetization. When the cubic anisotropy is introduced
zigzag patterns appear in the stripes at fields close to the remanence. An
analysis of the anisotropy terms of the model shows that this configuration is
related to specific values of the ratio between the cubic and the effective
uniaxial anisotropy. The mechanism behind this effect is related to particular
features of the anisotropy's energy landscape, since a global minima transition
as a function of the applied field is required in the anisotropy terms. This
new mechanism for zigzags formation could be present in monocrystal
ferromagnetic thin films in a given range of thicknesses.Comment: 910 pages, 10 figure
Semiclassical electronic transport calculations in multilayered granular alloys
We have calculated the electrical conductivity in the current-in-plane geometry of multilayered granular alloys composed of Co clusters embedded in Ag alternating with pure Ag layers. In particular, we have paid attention to the conductivity behavior as a function of Ag layer thickness, Co clusters' size, and degree of percolation. The electronic structure is self-consistently calculated within the unrestricted Hartree-Fock approximation using a parametrized tight binding Hamiltonian which includes a Hubbard-like term. The conductivity tensor is obtained by using the semiclassical Boltzmann equation in the anisotropic relaxation time approximation. We have used a s-d Mott-like scattering model for the electronic mean free path taking into account the Sondheimer's picture for electronic transport in thin films. We find that the experimental conductivity behavior at coalescence can be explained through the electronic band contribution. The conductivity behavior of continuous multilayers is already attained in the very early stage of percolation, as in the experiments. Ā© 2007 American Institute of Physics.Fil:Milano, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Llois, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
- ā¦