116 research outputs found
Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace
While a perfect hcp (0001) surface has three-fold symmetry, the diffraction
patterns commonly obtained are six-fold symmetric. This apparent change in
symmetry occurs because on a stepped surface, the atomic layers on adjacent
terraces are rotated by 180 degrees. Here we use a Low-Energy Electron
Microscope to acquire the three-fold diffraction pattern from a single hcp Ru
terrace and measure the intensity-vs-energy curves for several diffracted
beams. By means of multiple scattering calculations fitted to the experimental
data with a Pendry R-factor of 0.077, we find that the surface is contracted by
3.5(+-0.9) at 456 K.Comment: 10 pages, 4 figures. Corrected some typos, added more details.
Accepted for publication in Surface Science (Letters
Evidence for geomagnetic excursions recorded in Brunhes and Matuyama Chron lavas from the trans‐Mexican volcanic belt
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/1/arar_methodology.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/2/jgrb50214.pd
Oxygen adsorption on the Ru (10 bar 1 0) surface: Anomalous coverage dependence
Oxygen adsorption onto Ru (10 bar 1 0) results in the formation of two
ordered overlayers, i.e. a c(2 times 4)-2O and a (2 times 1)pg-2O phase, which
were analyzed by low-energy electron diffraction (LEED) and density functional
theory (DFT) calculation. In addition, the vibrational properties of these
overlayers were studied by high-resolution electron loss spectroscopy. In both
phases, oxygen occupies the threefold coordinated hcp site along the densely
packed rows on an otherwise unreconstructed surface, i.e. the O atoms are
attached to two atoms in the first Ru layer Ru(1) and to one Ru atom in the
second layer Ru(2), forming zigzag chains along the troughs. While in the
low-coverage c(2 times 4)-O phase, the bond lengths of O to Ru(1) and Ru(2) are
2.08 A and 2.03 A, respectively, corresponding bond lengths in the
high-coverage (2 times 1)-2O phase are 2.01 A and 2.04 A (LEED). Although the
adsorption energy decreases by 220 meV with O coverage (DFT calculations), we
observe experimentally a shortening of the Ru(1)-O bond length with O coverage.
This effect could not be reconciled with the present DFT-GGA calculations. The
nu(Ru-O) stretch mode is found at 67 meV [c(2 times 4)-2O] and 64 meV [(2 times
1)pg-2O].Comment: 10 pages, figures are available as hardcopies on request by mailing
[email protected], submitted to Phys. Rev. B (8. Aug. 97), other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts
cited By 10International audienceUsing model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ∼350 K to ∼450 K. A room temperature deposited 50 Å thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ∼420 K and a shoulder extending from ∼450 K to ∼600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ∼530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time. © 2011 the Owner Societies
- …