22,296 research outputs found
Recommended from our members
Atomic electron tomography in three and four dimensions
Atomic electron tomography (AET) has become a powerful tool for atomic-scale structural characterization in three and four dimensions. It provides the ability to correlate structures and properties of materials at the single-atom level. With recent advances in data acquisition methods, iterative three-dimensional (3D) reconstruction algorithms, and post-processing methods, AET can now determine 3D atomic coordinates and chemical species with sub-Angstrom precision, and reveal their atomic-scale time evolution during dynamical processes. Here, we review the recent experimental and algorithmic developments of AET and highlight several groundbreaking experiments, which include pinpointing the 3D atom positions and chemical order/disorder in technologically relevant materials and capturing how atoms rearrange during early nucleation at four-dimensional atomic resolution
On The Capacity of Surfaces in Manifolds with Nonnegative Scalar Curvature
Given a surface in an asymptotically flat 3-manifold with nonnegative scalar
curvature, we derive an upper bound for the capacity of the surface in terms of
the area of the surface and the Willmore functional of the surface. The
capacity of a surface is defined to be the energy of the harmonic function
which equals 0 on the surface and goes to 1 at infinity. Even in the special
case of Euclidean space, this is a new estimate. More generally, equality holds
precisely for a spherically symmetric sphere in a spatial Schwarzschild
3-manifold. As applications, we obtain inequalities relating the capacity of
the surface to the Hawking mass of the surface and the total mass of the
asymptotically flat manifold.Comment: 18 page
Dual Actions for Born-Infeld and Dp-Brane Theories
Dual actions with respect to U(1) gauge fields for Born-Infeld and -brane
theories are reexamined. Taking into account an additional condition, i.e. a
corollary to the field equation of the auxiliary metric, one obtains an
alternative dual action that does not involve the infinite power series in the
auxiliary metric given by ref. \cite{s14}, but just picks out the first term
from the series formally. New effective interactions of the theories are
revealed. That is, the new dual action gives rise to an effective interaction
in terms of one interaction term rather than infinite terms of different
(higher) orders of interactions physically. However, the price paid for
eliminating the infinite power series is that the new action is not quadratic
but highly nonlinear in the Hodge dual of a -form field strength. This
non-linearity is inevitable to the requirement the two dual actions are
equivalent.Comment: v1: 11 pages, no figures; v2: explanation of effective interactions
added; v3: concision made; v4: minor modification mad
Hadronization Approach for a Quark-Gluon Plasma Formed in Relativistic Heavy Ion Collisions
A transport model is developed to describe hadron emission from a strongly
coupled quark-gluon plasma formed in relativistic heavy ion collisions. The
quark-gluon plasma is controlled by ideal hydrodynamics, and the hadron motion
is characterized by a transport equation with loss and gain terms. The two sets
of equations are coupled to each other, and the hadronization hypersurface is
determined by both the hydrodynamic evolution and the hadron emission. The
model is applied to calculate the transverse momentum distributions of mesons
and baryons, and most of the results agree well with the experimental data at
RHIC.Comment: 16 pages, 24 figures. Version accepted by PR
- …