459 research outputs found
Single Cs Atoms as Collisional Probes in a large Rb Magneto-Optical Trap
We study cold inter-species collisions of Caesium and Rubidium in a strongly
imbalanced system with single and few Cs atoms. Observation of the single atom
fuorescence dynamics yields insight into light-induced loss mechanisms, while
both subsystems can remain in steady-state. This significantly simplifies the
analysis of the dynamics, as Cs-Cs collisions are effectively absent and the
majority component remains unaffected, allowing us to extract a precise value
of the Rb-Cs collision parameter. Extending our results to ground state
collisions would allow to use single neutral atoms as coherent probes for
larger quantum systems.Comment: 6 pages, 4 figure
Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions
The strong evanescent field around ultra-thin unclad optical fibers bears a
high potential for detecting, trapping, and manipulating cold atoms.
Introducing such a fiber into a cold atom cloud, we investigate the interaction
of a small number of cold Caesium atoms with the guided fiber mode and with the
fiber surface. Using high resolution spectroscopy, we observe and analyze
light-induced dipole forces, van der Waals interaction, and a significant
enhancement of the spontaneous emission rate of the atoms. The latter can be
assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure
Decay of accelerated particles
We study how the decay properties of particles are changed by acceleration.
It is shown that under the influence of acceleration (1) the lifetime of
particles is modified and (2) new processes (like the decay of the proton)
become possible. This is illustrated by considering scalar models for the decay
of muons, pions, and protons. We discuss the close conceptual relation between
these processes and the Unruh effect.Comment: Latex2e, 12 pages, 6 Postscript figures included with epsfig, to
appear in Phys. Rev.
Atom lithography using MRI-type feature placement
We demonstrate the use of frequency-encoded light masks in neutral atom
lithography. We demonstrate that multiple features can be patterned across a
monotonic potential gradient. Features as narrow as 0.9 microns are fabricated
on silicon substrates with a metastable argon beam. Internal state manipulation
with such a mask enables continuously adjustable feature positions and feature
densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure
Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction
We consider an atom in interaction with a massless scalar quantum field. We
discuss the structure of the rate of variation of the atomic energy for an
arbitrary stationary motion of the atom through the quantum vacuum. Our main
intention is to identify and to analyze quantitatively the distinct
contributions of vacuum fluctuations and radiation reaction to the spontaneous
excitation of a uniformly accelerated atom in its ground state. This gives an
understanding of the role of the different physical processes underlying the
Unruh effect. The atom's evolution into equilibrium and the Einstein
coefficients for spontaneous excitation and spontaneous emission are
calculated.Comment: 13 pages, KONS-RGKU-94-09, to appear in Phys. Rev.
Quantum Walk in Position Space with Single Optically Trapped Atoms
The quantum walk is the quantum analogue of the well-known random walk, which
forms the basis for models and applications in many realms of science. Its
properties are markedly different from the classical counterpart and might lead
to extensive applications in quantum information science. In our experiment, we
implemented a quantum walk on the line with single neutral atoms by
deterministically delocalizing them over the sites of a one-dimensional
spin-dependent optical lattice. With the use of site-resolved fluorescence
imaging, the final wave function is characterized by local quantum state
tomography, and its spatial coherence is demonstrated. Our system allows the
observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.Comment: 7 pages, 4 figure
Griscelli syndrome-type 2 in twin siblings: case report and update on RAB27A human mutations and gene structure
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.FAPESPCNPq(FAEPA) Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão PretoCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES
Nearest-Neighbor Detection of Atoms in a 1D Optical Lattice by Fluorescence Imaging
We overcome the diffraction limit in fluorescence imaging of neutral atoms in
a sparsely filled one-dimensional optical lattice. At a periodicity of 433 nm,
we reliably infer the separation of two atoms down to nearest neighbors. We
observe light induced losses of atoms occupying the same lattice site, while
for atoms in adjacent lattice sites, no losses due to light induced
interactions occur. Our method points towards characterization of correlated
quantum states in optical lattice systems with filling factors of up to one
atom per lattice site.Comment: 4 pages, 4 figure
Implementing general measurements on linear optical and solid-state qubits
We show a systematic construction for implementing general measurements on a
single qubit, including both strong (or projection) and weak measurements. We
mainly focus on linear optical qubits. The present approach is composed of
simple and feasible elements, i.e., beam splitters, wave plates, and polarizing
beam splitters. We show how the parameters characterizing the measurement
operators are controlled by the linear optical elements. We also propose a
method for the implementation of general measurements in solid-state qubits.Comment: 8 pages, 3 figure
Gauge-invariant electromagnetic response of a chiral px+ipy superconductor
We present a gauge-invariant theory of the electromagnetic response of a
chiral px+ipy superconductor in the clean limit. Due to the spontaneously
broken time-reversal symmetry, the effective action of the system contains an
anomalous term not present in conventional superconductors. As a result, the
electromagnetic charge and current responses contain anomalous terms, which
depend explicitly on the chirality of the superconducting order parameter.
These terms lead to a number of unusual effects, such as coupling of the
transverse currents to the collective plasma oscillations and a possibility of
inducing the charge density by the magnetic field perpendicular to the
conducting planes. We calculate the antisymmetric part of the conductivity
tensor (the intrinsic Hall conductivity) and show that it depends on the wave
vector of the electromagnetic field. We also show that the Mermin-Muzikar
magnetization current and the Hall conductivity are strongly suppressed at high
frequencies. Finally, we discuss implications of the theory to the experiments
in Sr2RuO4.Comment: 22 pages, 4 figures, final version as published in PR
- …