576 research outputs found

    Tree-level electron-photon interactions in graphene

    Full text link
    Graphene's low-energy electronic excitations obey a 2+1 dimensional Dirac Hamiltonian. After extending this Hamiltonian to include interactions with a quantized electromagnetic field, we calculate the amplitude associated with the simplest, tree-level Feynman diagram: the vertex connecting a photon with two electrons. This amplitude leads to analytic expressions for the 3D angular dependence of photon emission, the photon-mediated electron-hole recombination rate, and corrections to graphene's opacity πα\pi \alpha and dynamic conductivity πe2/2h\pi e^2/2 h for situations away from thermal equilibrium, as would occur in a graphene laser. We find that Ohmic dissipation in perfect graphene can be attributed to spontaneous emission.Comment: 5 pages, 3 figure

    Resonators coupled to voltage-biased Josephson junctions: From linear response to strongly driven nonlinear oscillations

    Full text link
    Motivated by recent experiments, where a voltage biased Josephson junction is placed in series with a resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential, where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped regime over the full range of driving parameters including the fundamental resonance as well as higher and sub-harmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct information about the underlying dynamics covering phenomena as bifurcations, irregular motion, up- and down conversion. Due to their tunability, present and future set-ups provide versatile platforms to explore the changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined conditions.Comment: 12 pages, 11 figure

    Strange Particle Production Via The Weak Interaction

    Full text link
    The differential cross sections for the neutrino-induced weak charged current production of strange particles in the threshold energy region are presented. The general representation of the weak hadronic current is newly developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born term approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry. For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the initial state nucleon and the final state hyperon.Comment: This paper was originally submitted to Physical Review C and published on 30 August, 201

    Charged kaon production by coherent scattering of neutrinos and antineutrinos on nuclei

    Get PDF
    With the aim of achieving a better and more complete understanding of neutrino interactions with nuclear targets, the coherent production of charged kaons induced by neutrinos and antineutrinos is investigated in the energy range of some of the current neutrino experiments. We follow a microscopic approach which, at the nucleon level, incorporates the most important mechanisms allowed by the chiral symmetry breaking pattern of QCD. The distortion of the outgoing (anti)kaon is taken into account by solving the Klein-Gordon equation with realistic optical potentials. Angular and momentum distributions are studied, as well as the energy and nuclear dependence of the total cross section.Comment: 20 pages, 14 figure

    Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    Get PDF
    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.Comment: 10 pages, 4 figure

    The potential of lasmiditan in migraine

    Get PDF
    Lasmiditan, a highly selective 5-hydroxytryptamine receptor 1F (5-HT1F) agonist, is the first drug in its class and is lacking triptan-like vasoactive properties. The US Food and Drug Administration (FDA) has recently approved lasmiditan for the acute treatment of migraine in adults based on positive results of two pivotal phase III trials, which showed a significant difference to placebo in the proportion of patients achieving total migraine freedom within 2h. More patients with lasmiditan achieved headache freedom and, in addition, freedom from the most bothersome symptom, that is, photophobia, than with placebo. Treatmentrelated side effects seem to be related to the rapid penetration of the drug into the brain and include dizziness, paresthesia and drowsiness, mostly of mild to moderate intensity. Interim results from an ongoing long-term phase III trial suggest a decrease in the frequency of adverse events after multiple lasmiditan use. Lasmiditan is a promising acute anti-migraine therapy, in particular for patients with cardiovascular risk factors, contraindications, or unwanted side effects to triptans

    Single-color pyrometry of individual incandescent multiwalled carbon nanotubes

    Full text link
    Objects that are small compared to their thermal photon wavelengths violate the assumptions underlying optical pyrometry and can show unusual coherence effects. To investigate this regime we measure the absolute light intensity from individual, incandescent multiwalled carbon nanotubes. The nanotube filaments' physical dimensions and composition are determined using transmission electron microscopy and their emissivities are calculated in terms of bulk conductivities. A single-color pyrometric analysis then returns a temperature value for each wavelength, polarization, and applied bias measured. Compared to the more common multiwavelength analysis, single-color pyrometry supports a more consistent and complete picture of the carbon nanotube lamps, one that describes their emissivity, optical conductivity, and thermal conductivity in the range 1600-2400 K.Comment: 8 pages, 5 figure

    Spacetime Noncommutativity and Antisymmetric Tensor Dynamics in the Early Universe

    Full text link
    This paper investigates the possible cosmological implications of the presence of an antisymmetric tensor field related to a lack of commutatitivity of spacetime coordinates at the Planck era. For this purpose, such a field is promoted to a dynamical variable, inspired by tensor formalism. By working to quadratic order in the antisymmetric tensor, we study the field equations in a Bianchi I universe in two models: an antisymmetric tensor plus scalar field coupled to gravity, or a cosmological constant and a free massless antisymmetric tensor. In the first scenario, numerical integration shows that, in the very early universe, the effects of the antisymmetric tensor can prevail on the scalar field, while at late times the former approaches zero and the latter drives the isotropization of the universe. In the second model, an approximate solution is obtained of a nonlinear ordinary differential equation which shows how the mean Hubble parameter and the difference between longitudinal and orthogonal Hubble parameter evolve in the early universe.Comment: 25 pages, Revtex file, 4 figures in attachmen
    corecore