1,549 research outputs found
The Large N Harmonic Oscillator as a String Theory
We propose a duality between the large-N gauged harmonic oscillator and a
novel string theory in two dimensions.Comment: 31 pages, 2 figures; v2: fixed typo
Lifshitz-like systems and AdS null deformations
Following arXiv:1005.3291 [hep-th], we discuss certain lightlike deformations
of in Type IIB string theory sourced by a lightlike dilaton
dual to the N=4 super Yang-Mills theory with a lightlike varying
gauge coupling. We argue that in the case where the -direction is
noncompact, these solutions describe anisotropic 3+1-dim Lifshitz-like systems
with a potential in the -direction generated by the lightlike dilaton. We
then describe solutions of this sort with a linear dilaton. This enables a
detailed calculation of 2-point correlation functions of operators dual to bulk
scalars and helps illustrate the spatial structure of these theories. Following
this, we discuss a nongeometric string construction involving a
compactification along the -direction of this linear dilaton system. We
also point out similar IIB axionic solutions. Similar bulk arguments for
-noncompact can be carried out for deformations of in
M-theory.Comment: Latex, 20pgs, 1 eps fig; v2. references added; v3. minor
clarifications added, to appear in PR
Longevity and mortality of cats attending primary care veterinary practices in England
Enhanced knowledge on longevity and mortality in cats should support improved breeding, husbandry, clinical care and disease prevention strategies. The VetCompass research database of primary care veterinary practice data offers an extensive resource of clinical health information on companion animals in the UK. This study aimed to characterise longevity and mortality in cats, and to identify important demographic risk factors for compromised longevity. Crossbred cats were hypothesised to live longer than purebred cats. Descriptive statistics were used to characterise the deceased cats. Multivariable linear regression methods investigated risk factor association with longevity in cats that died at or after 5 years of age. From 118,016 cats attending 90 practices in England, 4009 cats with confirmed deaths were randomly selected for detailed study. Demographic characterisation showed that 3660 (91.7%) were crossbred, 2009 (50.7%) were female and 2599 (64.8%) were neutered. The most frequently attributed causes of mortality in cats of all ages were trauma (12.2%), renal disorder (12.1%), non-specific illness (11.2%), neoplasia (10.8%) and mass lesion disorders (10.2%). Overall, the median longevity was 14.0 years (interquartile range [IQR] 9.0–17.0; range 0.0–26.7). Crossbred cats had a higher median longevity than purebred cats (median [IQR] 14.0 years [9.1–17.0] vs 12.5 years [6.1–16.4]; P \u3c0.001), but individual purebred cat breeds varied substantially in longevity. In cats dying at or after 5 years (n = 3360), being crossbred, having a lower bodyweight, and being neutered and non-insured were associated with increased longevity. This study described longevity in cats and identified important causes of mortality and breed-related associations with compromised longevity
Non-Fermi liquids from holography
We report on a potentially new class of non-Fermi liquids in
(2+1)-dimensions. They are identified via the response functions of composite
fermionic operators in a class of strongly interacting quantum field theories
at finite density, computed using the AdS/CFT correspondence. We find strong
evidence of Fermi surfaces: gapless fermionic excitations at discrete shells in
momentum space. The spectral weight exhibits novel phenomena, including
particle-hole asymmetry, discrete scale invariance, and scaling behavior
consistent with that of a critical Fermi surface postulated by Senthil.Comment: 10 pages, 16 figures. v2: added references, corrected figures, some
minor changes. v3: figure 5 replace
ZZ brane amplitudes from matrix models
We study instanton contribution to the partition function of the one matrix
model in the k-th multicritical region, which corresponds to the (2,2k-1)
minimal model coupled to Liouville theory. The instantons in the one matrix
model are given by local extrema of the effective potential for a matrix
eigenvalue and identified with the ZZ branes in Liouville theory. We show that
the 2-instanton contribution in the partition function is universal as well as
the 1-instanton contribution and that the connected part of the 2-instanton
contribution reproduces the annulus amplitudes between the ZZ branes in
Liouville theory. Our result serves as another nontrivial check on the
correspondence between the instantons in the one matrix model and the ZZ branes
in Liouville theory, and also suggests that the expansion of the partition
function in terms of the instanton numbers are universal and gives
systematically ZZ brane amplitudes in Liouville theory.Comment: 29 pages, 4 figures; v2:how to scale x is generalized;
v3:introduction and the last section are revised, typos correcte
Gravity duals for non-relativistic CFTs
We attempt to generalize the AdS/CFT correspondence to non-relativistic
conformal field theories which are invariant under Galilean transformations.
Such systems govern ultracold atoms at unitarity, nucleon scattering in some
channels, and more generally, a family of universality classes of quantum
critical behavior. We construct a family of metrics which realize these
symmetries as isometries. They are solutions of gravity with negative
cosmological constant coupled to pressureless dust. We discuss realizations of
the dust, which include a bulk superconductor. We develop the holographic
dictionary and compute some two-point correlators. A strange aspect of the
correspondence is that the bulk geometry has two extra noncompact dimensions.Comment: 12 pages; v2, v3, v4: added references, minor corrections; v3:
cleaned up and generalized dust; v4: closer to published versio
A controlled expansion for certain non-Fermi liquid metals
The destruction of Fermi liquid behavior when a gapless Fermi surface is
coupled to a fluctuating gapless boson field is studied theoretically. This
problem arises in a number of different contexts in quantum many body physics.
Examples include fermions coupled to a fluctuating transverse gauge field
pertinent to quantum spin liquid Mott insulators, and quantum critical metals
near a Pomeranchuk transition. We develop a new controlled theoretical approach
to determining the low energy physics. Our approach relies on combining an
expansion in the inverse number (N) of fermion species with a further expansion
in the parameter \epsilon = z_b -2 where z_b is the dynamical critical exponent
of the boson field. We show how this limit allows a systematic calculation of
the universal low energy physics of these problems. The method is illustrated
by studying spinon fermi surface spin liquids, and a quantum critical metal at
a second order electronic nematic phase transition. We calculate the low energy
single particle spectra, and various interesting two particle correlation
functions. In some cases deviations from the popular Random Phase Approximation
results are found. Some of the same universal singularities are also calculated
to leading non-vanishing order using a perturbative renormalization group
calculation at small N extending previous results of Nayak and Wilczek.
Implications for quantum spin liquids, and for Pomeranchuk transitions are
discussed. For quantum critical metals at a nematic transition we show that the
tunneling density of states has a power law suppression at low energies.Comment: 19 pages, 15 figure
Exocentric direction judgements in computer-generated displays and actual scenes
One of the most remarkable perceptual properties of common experience is that the perceived shapes of known objects are constant despite movements about them which transform their projections on the retina. This perceptual ability is one aspect of shape constancy (Thouless, 1931; Metzger, 1953; Borresen and Lichte, 1962). It requires that the viewer be able to sense and discount his or her relative position and orientation with respect to a viewed object. This discounting of relative position may be derived directly from the ranging information provided from stereopsis, from motion parallax, from vestibularly sensed rotation and translation, or from corollary information associated with voluntary movement. It is argued that: (1) errors in exocentric judgements of the azimuth of a target generated on an electronic perspective display are not viewpoint-independent, but are influenced by the specific geometry of their perspective projection; (2) elimination of binocular conflict by replacing electronic displays with actual scenes eliminates a previously reported equidistance tendency in azimuth error, but the viewpoint dependence remains; (3) the pattern of exocentrically judged azimuth error in real scenes viewed with a viewing direction depressed 22 deg and rotated + or - 22 deg with respect to a reference direction could not be explained by overestimation of the depression angle, i.e., a slant overestimation
- …