168 research outputs found

    The Insulation of HVDC Extruded Cable System Joints. Part 1: Review of Materials, Design and Testing Procedures

    Get PDF
    This position paper by the DEIS HVDC Cable Systems Technical Committee provides a review of existing diagnostic electrical and dielectric techniques for testing the insulation of polymeric extruded HVDC cable joints in the present Part 1. Here, the state of the art on the insulation of HVDC extruded cable system joints is covered with reference to types, design and testing techniques. This helps to identify routine tests as the first target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers' practices for quality control of the insulation of accessories during routine tests and VHF/UHF wireless sensors as the best tool for performing such measurements on joints in the noisy factory environment. Thereby, a novel protocol for the measurement of partial discharges using AC voltages and VHF/UHF sensors, for quality control during routine tests on such joints, is derived in the next Part 2. This protocol is the main novelty of this investigation

    Osmosis in a minimal model system

    Full text link
    Osmosis plays a central role in the function of living and soft matter systems. While the thermodynamics of osmosis is well understood, the underlying microscopic dynamical mechanisms remain the subject of discussion. Unraveling these mechanisms is a crucial prerequisite for eventually understanding osmosis in non-equilibrium systems. Here, we investigate the microscopic basis of osmosis, in a system at equilibrium, using molecular dynamics simulations of a minimal model in which repulsive solute and solvent particles differ only in their interactions with an external potential. For this system, we can derive a simple virial-like relation for the osmotic pressure. Our simulations support an intuitive picture in which the solvent concentration gradient, at osmotic equilibrium, arises from the balance between an outward force, caused by the increased total density in the solution, and an inward diffusive flux caused by the decreased solvent density in the solution. While more complex effects may occur in other osmotic systems, they are not required for a description of the basic physics of osmosis in this minimal model.Comment: 10 pages, 8 figure

    Chemical and physical defense traits in two sexual forms of opuntia robusta in Central Eastern Mexico

    Get PDF
    Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central-Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite's reproductive output higher than the female's, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes
    • …
    corecore