71 research outputs found
Kinetic Roughening in Slow Combustion of Paper
Results of experiments on the dynamics and kinetic roughening of
one-dimensional slow-combustion fronts in three grades of paper are reported.
Extensive averaging of the data allows a detailed analysis of the spatial and
temporal development of the interface fluctuations. The asymptotic scaling
properties, on long length and time scales, are well described by the
Kardar-Parisi-Zhang (KPZ) equation with short-range, uncorrelated noise. To
obtain a more detailed picture of the strong-coupling fixed point,
characteristic of the KPZ universality class, universal amplitude ratios, and
the universal coupling constant are computed from the data and found to be in
good agreement with theory. Below the spatial and temporal scales at which a
cross-over takes place to the standard KPZ behavior, the fronts display higher
apparent exponents and apparent multiscaling. In this regime the interface
velocities are spatially and temporally correlated, and the distribution of the
magnitudes of the effective noise has a power-law tail. The relation of the
observed short-range behavior and the noise as determined from the local
velocity fluctuations is discussed.Comment: RevTeX v3.1, 13 pages, 12 Postscript figures (uses epsf.sty), 3
tables; submitted to Phys. Rev.
Effect of a columnar defect on the shape of slow-combustion fronts
We report experimental results for the behavior of slow-combustion fronts in
the presence of a columnar defect with excess or reduced driving, and compare
them with those of mean-field theory. We also compare them with simulation
results for an analogous problem of driven flow of particles with hard-core
repulsion (ASEP) and a single defect bond with a different hopping probability.
The difference in the shape of the front profiles for excess vs. reduced
driving in the defect, clearly demonstrates the existence of a KPZ-type of
nonlinear term in the effective evolution equation for the slow-combustion
fronts. We also find that slow-combustion fronts display a faceted form for
large enough excess driving, and that there is a corresponding increase then in
the average front speed. This increase in the average front speed disappears at
a non-zero excess driving in agreement with the simulated behavior of the ASEP
model.Comment: 7 pages, 7 figure
Temporal and Spatial Persistence of Combustion Fronts in Paper
The spatial and temporal persistence, or first-return distributions are measured for slow-combustion fronts in paper. The stationary temporal and (perhaps less convincingly) spatial persistence exponents agree with the predictions based on the front dynamics, which asymptotically belongs to the Kardar-Parisi-Zhang universality class. The stationary short-range and the transient behavior of the fronts are non-Markovian, and the observed persistence properties thus do not agree with the predictions based on Markovian theory. This deviation is a consequence of additional time and length scales, related to the crossovers to the asymptotic coarse-grained behavior.Peer reviewe
Scaling and Noise in Slow Combustion of Paper
We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The noise affecting the fronts reveals short range temporal and spatial correlations, and non-Gaussian noise amplitudes. Our results imply that the overall behavior of slow combustion fronts cannot be explained by standard theories of kinetic roughening.Peer reviewe
Kinetic Roughening in Slow Combustion of Paper
We present results from an experimental study on the kinetic roughening of slow combustion fronts in paper sheets. The sheets were positioned inside a combustion chamber and ignited from the top to minimize convection effects. The emerging fronts were videotaped and digitized to obtain their time-dependent heights. The data were analyzed by calculating two-point correlation functions in the saturated regime. Both the growth and roughening exponents were determined and found consistent with the Kardar-Parisi-Zhang equation, in agreement with recent theoretical work.Peer reviewe
Comment on: Kinetic Roughening in Slow Combustion of Paper
We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515
(1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm
Classification of KPZQ and BDP models by multiaffine analysis
We argue differences between the Kardar-Parisi-Zhang with Quenched disorder
(KPZQ) and the Ballistic Deposition with Power-law noise (BDP) models, using
the multiaffine analysis method. The KPZQ and the BDP models show mono-affinity
and multiaffinity, respectively. This difference results from the different
distribution types of neighbor-height differences in growth paths. Exponential
and power-law distributions are observed in the KPZQ and the BDP, respectively.
In addition, we point out the difference of profiles directly, i.e., although
the surface profiles of both models and the growth path of the BDP model are
rough, the growth path of the KPZQ model is smooth.Comment: 11 pages, 6 figure
Growing interfaces uncover universal fluctuations behind scale invariance
Stochastic motion of a point -- known as Brownian motion -- has many
successful applications in science, thanks to its scale invariance and
consequent universal features such as Gaussian fluctuations. In contrast, the
stochastic motion of a line, though it is also scale-invariant and arises in
nature as various types of interface growth, is far less understood. The two
major missing ingredients are: an experiment that allows a quantitative
comparison with theory and an analytic solution of the Kardar-Parisi-Zhang
(KPZ) equation, a prototypical equation for describing growing interfaces. Here
we solve both problems, showing unprecedented universality beyond the scaling
laws. We investigate growing interfaces of liquid-crystal turbulence and find
not only universal scaling, but universal distributions of interface positions.
They obey the largest-eigenvalue distributions of random matrices and depend on
whether the interface is curved or flat, albeit universal in each case. Our
exact solution of the KPZ equation provides theoretical explanations.Comment: 5 pages, 3 figures, supplementary information available on Journal
pag
Finite time corrections in KPZ growth models
We consider some models in the Kardar-Parisi-Zhang universality class, namely
the polynuclear growth model and the totally/partially asymmetric simple
exclusion process. For these models, in the limit of large time t, universality
of fluctuations has been previously obtained. In this paper we consider the
convergence to the limiting distributions and determine the (non-universal)
first order corrections, which turn out to be a non-random shift of order
t^{-1/3} (of order 1 in microscopic units). Subtracting this deterministic
correction, the convergence is then of order t^{-2/3}. We also determine the
strength of asymmetry in the exclusion process for which the shift is zero.
Finally, we discuss to what extend the discreteness of the model has an effect
on the fitting functions.Comment: 34 pages, 5 figures, LaTeX; Improved version including shift of PASEP
height functio
- …