13 research outputs found

    Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation.

    No full text
    This study presents the first evidence of heterologous anthocyanin regulatory genes altering anthocyanin expression in stably transformed leguminous plants. Two families of anthocyanin regulatory genes, myc (delila, B-Peru) and myb (myb. Ph2, Cl), are involved in the activation of the phenylpropanoid pathway. White clover (Trifolium repens cv. Haifa) plants were transformed with dicotyledonous and monocotyledonous myb or myc genes. Some of these transformed plants exhibited enhanced anthocyanin accumulation in a range of tissues. One plant, transformed with the B-Peru gene driven by the Cauliflower Mosaic Virus 35S promoter, displayed a unique pattern of anthocyanin accumulation in the leaf. The accumulation of anthocyanin in this plant was closely associated with the crescent of leaves, which is normally white. The red pigmentation declined in intensity in the oldest leaf stage. The B-Peru message was detected in all leaf stages of this white clover plant. This anthocyanin pattern was shown to be heritable

    Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat

    No full text
    The development of cultivars resistant to cereal cyst nematode (CCN) is a primary objective in wheat breeding in the southern wheatbelt of Australia. Nine CCN resistance genes have been identified in wheat and its relatives, some of which confer resistance to the Australian pathotype of CCN (Ha13). Cultivars released in Australia with CCN resistance carry either the Cre1 or CreF gene, with the Cre3 gene present in advanced breeding lines. The biological assay for CCN resistance screening in wheat is time-consuming, not reliable on a single-plant basis, and prone to inconsistencies, thus reducing the efficiency of selection amongst breeding lines. Using gene sequences initially isolated from the Cre3 locus, a DNA-based marker selection system was developed and applied to unambiguously identify wheat lines carrying resistance alleles at theCre1 and/or Cre3 loci in breeding populations derived from diverse genetic backgrounds. Homologues of sequences from the Cre3 locus, located elsewhere in the wheat genome, can also be used to select wheat lines with a newly identified CCN resistance gene (Cre6) introgressed from Aegilops ventricosa. Application of these markers has become an integral part of the southern Australian breeding programs.F. C. Ogbonnaya, N. C. Subrahmanyam, O. Moullet, J. de Majnik, H. A. Eagles, J. S. Brown, R. F. Eastwood, J. Kollmorgen, R. Appels and E. S. Laguda
    corecore