4 research outputs found

    High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films

    No full text
    Silicon oxide barrier coatings fabricated by a plasma enhanced chemical vapour deposition roll-to-roll process on polyester film have demonstrated impressive properties as a barrier to water vapour permeation. This study highlights the influence of the substrate on these coatings as we find that heat stabilised poly(ethylene terephthalate) (PET), with or without an additional acrylate primer layer, and poly(ethylene naphthalate) (PEN) produce superior composites than untreated PET film in terms of gas barrier. The barrier layers on PET and filled PET substrates, for which the barrier performance is within the detectable range of our measurement, have an activation energy to water permeation that increases with the thickness of the silica. For the thickest silica this is an increase of 26 kJ mol- 1 over that from the uncoated substrate. We attribute this to the creation of highly tortuous, size-hindered pathways and the decoupling of defects as the coating is deposited in multiple passes. Using a more sensitive detection technique we measure a water vapour transmission rate value as low as 2 × 10- 4 g m- 2 day- 1 for 1 μm thick coatings on PEN. Such a good barrier is observed for these thick coatings due to the high degree of carbon detected in the films that makes them less brittle than pure SiO2 layers. Substrate surface roughness is found to influence the morphology of the SiOx films but does not seem to adversely affect the barrier performance of the composites. © 2007 Elsevier B.V. All rights reserved

    Mechanical properties of SiOx gas barrier coatings on polyester films

    Get PDF
    This paper reports the impressive mechanical properties of 1 μm thick carbon-containing SiOx gas barrier coatings, characterised using the uniaxial fragmentation test. Such coatings have been found to act as excellent barriers to water vapour permeation partly because they can be made so thick without stress induced cracking. The impressive mechanical properties are thought to be due in part to the high amount of carbon they contain, which gives them a more organic character, as well as the fact that they are deposited as a succession of thinner layers. The adhesion of the coatings to the polyester film is good in all cases, reflecting a high density of covalent bonding at the interface. Improvement of the mechanical properties of a SiOx/PET composite can be achieved by altering the substrate. By replacing the PET with a heat-stabilised (HS) PET film, a HS film with an acrylate layer or PEN, it is found that the coating displays improved mechanical properties and adhesive strength (as well as barrier). This is thought to be due to the superior surface thermal and mechanical properties of these substrates. Deposition temperatures are at least 80 °C, which causes molecular motion at the surface of a plain PET film and creates defects in the SiOx coating as it grows, making it more brittle and permeable to gas flow. © 2008 Elsevier B.V. All rights reserved
    corecore