614 research outputs found
Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature
Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs
Modeling the influence of Twitter in reducing and increasing the spread of influenza epidemics
In this paper we present compartmentalized neuron arraying (CNA) microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10–100-fold less than existing systems). The approach combines the benefits of microfluidics for precision single cell handling with biomaterial patterning for the long term maintenance of neuronal arrangements. A differential flow principle was used for cell metering and loading along linear arrays. An innovative water masking technique was developed for the inclusion of aligned biomaterial patterns within the microfluidic environment. For patterning primary neurons the technique involved the use of meniscus-pinning micropillars to align a water mask for plasma stencilling a poly-amine coating. The approach was extended for patterning the human SH-SY5Y neuroblastoma cell line using a poly(ethylene glycol) (PEG) back-fill and for dopaminergic LUHMES neuronal precursors by the further addition of a fibronectin coating. The patterning efficiency Epatt was >75% during lengthy in chip culture, with ~85% of the outgrowth channels occupied by neurites. Neurons were also cultured in next generation circuits which enable neurite guidance into all outgrowth channels for the formation of extensive inter-compartment networks. Fluidic isolation protocols were developed for the rapid and sustained treatment of the different cellular and sub-cellular compartments. In summary, this research demonstrates widely applicable microfluidic methods for the construction of compartmentalized brain models with single cell precision. These minimalistic ex vivo tissue constructs pave the way for high throughput experimentation to gain deeper insights into pathological processes such as Alzheimer and Parkinson Diseases, as well as neuronal development and function in health
Reconstruction 3D en tomographie par rayonnement synchrotron coherent
Un système de microtomographie 3D utilisant le rayonnement synchrotron très cohérent de l'ESRF de Grenoble, a été développé. Nous discutons ici les spécificités de ce type d'imagerie tomographique. En effet, la cohérence spatiale de la source de rayons X de l'ESRF, engendre outre les effets d'atténuation conventionnels, des phénomènes dits de « contraste de phase ». Ceux-ci sont liés à des interférences entre les ondes diffractées par l'échantillon après propagation, lorsque 1' échantillon est placé à une distance non nulle du détecteur. Nous montrons que sous certaines conditions, les algorithmes de reconstruction conventionnels sont utilisables. L'image reconstruite possède alors une contribution liée à l'atténuation, et une contribution liée aux brusques variations dans l'indice de réfraction
A Time-Domain Wavelet-Based Approach for Fluorescence Diffuse Optical Tomography
Purpose: In the context of fluorescence diffuse optical tomography, determining the optimal way to exploit the time-resolved information has been receiving much attention and different features of the time-resolved signals have been introduced. In this article, the authors revisit and generalize the notion of feature, considering the projection of the measurements onto some basis functions. This leads the authors to propose a novel approach based on the wavelet transform of the measurements. Methods: A comparative study between the reconstructions obtained from the proposed wavelet-based approach and the reconstructions obtained from the reference temporal moments is provided. An inhomogeneous cubic medium is considered. Reconstructions are performed from synthetic measurements assuming Poisson noise statistics. In order to provide fairly comparable reconstructions, the reconstruction scheme is associated with a particular procedure for selecting the regularization parameter. Results: In the noise-free case, the reconstruction quality is shown to be mainly driven by the number of selected features. In the presence of noise, however, the reconstruction quality depends on the type of the features. In this case, the wavelet approach is shown to outperform the moment approach. While the optimal time-resolved reconstruction quality, which is obtained considering the whole set of time samples, is recovered using only eight wavelet functions, it cannot be attained using moments. It is finally observed that the time-resolved information is of limited utility, in terms of reconstruction, when the maximum number of detected photons is lower than 105. Conclusions: The wavelet approach allows for better exploiting the time-resolved information, especially when the number of detected photons is low. However, when the number of detected photons decreases below a certain threshold, the time-resolved information itself is shown to be of limited utility
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
© 2019, The Author(s). Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers
Slide Attacks on a Class of Hash Functions
Abstract. This paper studies the application of slide attacks to hash functions. Slide attacks have mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery attacks. In other cases, we can at least distinguish a given hash function from a random oracle. To illustrate our results, we describe attacks against the Grindahl-256 and Grindahl-512 hash functions. To the best of our knowledge, this is the first cryptanalytic result on Grindahl-512. Furthermore, we point out a slide-based distinguisher attack on a slightly modified version of RadioGatĂşn. We finally discuss simple countermeasures as a defense against slide attacks. Key words: slide attacks, hash function, Grindahl, RadioGatĂşn, MAC, sponge function.
Cryptanalysis of Reduced NORX
NORX is a second round candidate of the ongoing CAESAR competition for authenticated encryption. It is a nonce based authenticated encryption scheme based on the sponge construction. Its two variants denoted by NORX32 and NORX64 provide a security level of 128 and 256 bits, respectively. In this paper, we present a state/key recovery attack for both variants with the number of rounds of the core permutation reduced to 2 (out of 4) rounds. The time complexity of the attack for NORX32 and NORX64 is and respectively, while the data complexity is negligible. Furthermore, we show a state recovery attack against NORX in the parallel mode using an internal differential attack for 2 rounds of the permutation. The data, time and memory complexities of the attack for NORX32 are , and respectively and for NORX64 are , and respectively. Finally, we present a practical distinguisher for the keystream of NORX64 based on two rounds of the permutation in the parallel mode using an internal differential-linear attack. To the best of our knowledge, our results are the best known results for NORX in nonce respecting manner
I-CARE, a European Prospective Cohort Study Assessing Safety and Effectiveness of Biologics in Inflammatory Bowel Disease
Background and aims: There is a need to evaluate the benefit-risk ratio of current therapies in inflammatory bowel disease (IBD) patients to provide the best quality of care. The primary objective of I-CARE (IBD Cancer and serious infections in Europe) was to assess prospectively safety concerns in IBD, with specific focus on the risk of cancer/lymphoma and serious infections in patients treated with anti-tumor necrosis factor and other biologic monotherapy as well as in combination with immunomodulators.. Methods: I-CARE was designed as a European prospective longitudinal observational multicenter cohort study to include patients with a diagnosis of Crohn's disease, ulcerative colitis, or IBD unclassified established at least 3 months prior to enrollment. Results: A total of 10,206 patients were enrolled between March 2016 and April 2019, including 6169 (60.4%) patients with Crohn's disease, 3853 (37.8%) with ulcerative colitis, and 184 (1.8%) with a diagnosis of IBD unclassified. Thirty-two percent of patients were receiving azathioprine/thiopurines, 4.6% 6-mercaptopurine, and 3.2% methotrexate at study entry. At inclusion, 47.3% of patients were treated with an anti-tumor necrosis factor agent, 8.8% with vedolizumab, and 3.4% with ustekinumab. Roughly one-quarter of patients (26.8%) underwent prior IBD-related surgery. Sixty-six percent of patients had been previously treated with systemic steroids. Three percent of patients had a medical history of cancer prior to inclusion and 1.1% had a history of colonic, esophageal, or uterine cervix high-grade dysplasia.. Conclusions: I-CARE is an ongoing investigator-initiated observational European prospective cohort study that will provide unique information on the long-term benefits and risks of biological therapies in IBD patients
The what and why of perceptual asymmetries in the visual domain
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions)
- …