22,955 research outputs found

    Abelian 2-form gauge theory: superfield formalism

    Full text link
    We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for {\it all} the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). One of the salient features of our present investigation is that the above nilpotent (anti-)BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well-known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our supperfield approach to the case of Abelian 3-form gauge theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    An Alternative To The Horizontality Condition In Superfield Approach To BRST Symmetries

    Full text link
    We provide an alternative to the gauge covariant horizontality condition which is responsible for the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge and (anti-)ghost fields of a (3 + 1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4, 2)-dimensional supermanifold, parameterized by a set of four spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta. The latter condition enables us to derive the nilpotent (anti-)BRST symmetry transformations for all the fields of an interacting 4D 1-form non-Abelian gauge theory where there is an explicit coupling between the gauge field and the Dirac fields. The key differences and striking similarities between the above two conditions are pointed out clearly.Comment: LaTeX file, 20 pages, journal versio

    Nonmodal energy growth and optimal perturbations in compressible plane Couette flow

    Full text link
    Nonmodal transient growth studies and estimation of optimal perturbations have been made for the compressible plane Couette flow with three-dimensional disturbances. The maximum amplification of perturbation energy over time, GmaxG_{\max}, is found to increase with increasing Reynolds number Re{\it Re}, but decreases with increasing Mach number MM. More specifically, the optimal energy amplification GoptG_{\rm opt} (the supremum of GmaxG_{\max} over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as MM increases. The corresponding optimal streamwise wavenumber, αopt\alpha_{\rm opt}, is non-zero at M=0, increases with increasing MM, reaching a maximum for some value of MM and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers, the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2, the reasons for which are shown to be tied to the dominance of some terms in the linear stability operator. Based on a detailed nonmodal energy analysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid {\it algebraic} instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E˙1\dot{\mathcal E}_1) in the same limit

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    A Concise Introduction to Perturbation Theory in Cosmology

    Full text link
    We give a concise, self-contained introduction to perturbation theory in cosmology at linear and second order, striking a balance between mathematical rigour and usability. In particular we discuss gauge issues and the active and passive approach to calculating gauge transformations. We also construct gauge-invariant variables, including the second order tensor perturbation on uniform curvature hypersurfaces.Comment: revtex4, 16 pages, 3 figures; v2: minor changes, typos corrected, reference added, version accepted by CQ

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, GmaxG_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into LLˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow

    Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

    Full text link
    The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)- and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    Superfield Approach To Nilpotent Symmetries For QED From A Single Restriction: An Alternative To The Horizontality Condition

    Full text link
    We derive together the exact local, covariant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (A_\mu), the (anti-)ghost fields ((\bar C)C) and the Dirac fields (\psi, \bar\psi) of the Lagrangian density of a four (3 + 1)-dimensional QED by exploiting a single restriction on the six (4, 2)-dimensional supermanifold. A set of four even spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and two odd Grassmannian variables \theta and \bar\theta parametrize this six dimensional supermanifold. The new gauge invariant restriction on the above supermanifold owes its origin to the (super) covariant derivatives and their intimate relations with the (super) 2-form curvatures (\tilde F^{(2)})F^{(2)} constructed with the help of (super) 1-form gauge connections (\tilde A^{(1)})A^{(1)} and (super) exterior derivatives (\tilde d)d. The results obtained separately by exploiting (i) the horizontality condition, and (ii) one of its consistent extensions, are shown to be a simple consequence of this new single restriction on the above supermanifold. Thus, our present endeavour provides an alternative to (and, in some sense, generalization of) the horizontality condition of the usual superfield formalism applied to the derivation of BRST symmetries.Comment: LaTeX file, 15 pages, journal-versio
    corecore