36 research outputs found

    Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography

    No full text
    IMPORTANCE: The retinal vasculature is involved in many ocular diseases that cause visual loss. Although fluorescein angiography is the criterion standard for evaluating the retina vasculature, it has risks of adverse effects and known defects in imaging all the layers of the retinal vasculature. Optical coherence tomography (OCT) angiography can image vessels based on flow characteristics and may provide improved information. OBJECTIVE: To investigate the ability of OCT angiography to image the vascular layers within the retina compared with conventional fluorescein angiography. DESIGN, SETTING, AND PARTICIPANTS: In this study, performed from March 14, 2014, through June 24, 2014, a total of 5 consecutive, overlapping B-scan OCT angiography images composed of 216 A-scans were obtained at 216 discrete positions within a region of interest, typically a 2 x 2-mm area of the retina. The flow imaging was based on split-spectrum amplitude decorrelation angiography (SSADA), which can dissect layers of vessels in the retina. These distinct layers were compared with the fluorescein angiograms in 12 healthy eyes from patients at a private practice retina clinic to evaluate the ability to visualize the radial peripapillary capillary network. The proportion of the inner vs outer retinal vascular layers was estimated by 3 masked readers and compared with conventional fluorescein angiograms of the same eyes. MAIN OUTCOMES AND MEASURES: Outcome measures were visualization of the radial peripapillary capillary network in the fluorescein and SSADA scans and the proportion of the inner retinal vascular plexus vs the outer retinal capillary plexus as seen in SSADA scans that would match the fluorescein angiogram. RESULTS: In none of the 12 eyes could the radial peripapillary capillary network be visualized completely around the nerve head by fluorescein angiography, whereas the network was readily visualized in the SSADA scans. The fluorescein angiograms were matched, with a mean proportion of the inner vascular plexus being 95.3% (95% CI, 92.2%-97.8%) vs 4.7% (95% CI, 2.6%-5.7%) for the outer capillary plexus from the SSADA scans. CONCLUSIONS AND RELEVANCE: Fluorescein angiography does not image the radial peripapillary or the deep capillary networks well. However, OCT angiography can image all layers of the retinal vasculature without dye injection. Therefore, OCT angiography, and the findings generated, have the potential to affect clinical evaluation of the retina in healthy patients and patients with disease

    Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography

    No full text
    IMPORTANCE: Macular telangiectasia type 2 (MacTel 2) is a rare disease in which abnormalities of the retinal vasculature play a key role. The vascular abnormalities are typically evaluated using fluorescein angiography, a modality with known defects in imaging the deeper layers of the retinal vasculature. Angiography based on optical coherence tomography can image vessels based on flow characteristics without dye injection and may provide improved information concerning the pathophysiology of MacTel 2. OBJECTIVE: To investigate MacTel 2 using optical coherence tomographic angiography. DESIGN, SETTING, AND PARTICIPANTS: Fourteen eyes of 7 patients with MacTel 2 were analyzed in a community-based retina practice. The flow imaging was based on split-spectrum amplitude decorrelation angiography, which can dissect layers of vessels in the retina. The inner retinal vascular plexus, the outer plexus, and deeper vascular invasion into the outer and subretinal spaces were optically dissected in en face images based on flow. MAIN OUTCOMES AND MEASURES: Visualization and qualitative evaluation of the vascular layers of the retina as they may be affected by MacTel 2, both in terms of depth and topographic characteristics. RESULTS: A consistent set of retinal vascular changes were seen in the eyes with MacTel 2. There was some loss of capillary density in the inner retinal vascular plexus but many more prominent alterations in the deep retinal vascular plexus. In milder forms of the disease, the deep plexus showed dilation and telangiectasis and, in more advanced cases, thinning and loss. The remaining vessels were elongated and widely spaced capillary segments. Invasion by new vessels into the outer and subretinal spaces occurred subjacent to the regions showing greatest flow imaging abnormalities in the inner and deep retinal vascular layers. CONCLUSIONS AND RELEVANCE: As evidenced by the patients in this study, important retinal vascular changes in MacTel 2 occur in the deep capillary plexus of the retina, a layer poorly visualized by fluorescein angiography and, to a lesser extent, in the inner vascular plexus. The proliferation of vessels in the outer and subretinal spaces may be in part compensatory for poor retinal perfusion by established vascular layers in the retina

    Particle swarm optimization approach for modelling a turning process,

    No full text
    This paper proposes the modelling of a turning process using particle swarm optimization (PSO). The independent input machining parameters for the modelling were cutting speed, feed rate, and cutting depth. The input parameters affected three dependent output parameters that were the main cutting force, surface roughness, and tool life. The values of the independent and dependent parameters were acquired by experimental work and served as knowledge base for the PSO process. By utilizing the knowledge base and the PSO approach, various models could be acquired for describing the cutting process. In our case, three different polynomial models were obtained: models a) for the main cutting force, b) for surface roughness, and c) for tool life. All the models had exactly the same basic polynomial form which was chosen similarly to that in the conventional regression analysis method. The PSO approach was used for optimization of the polynomials' coefficients. Several different randomly-selected data sets were used for the learning and testing phases. The accuracies of the developed models were analysed. It was discovered that the accuracies of the models for different learning and testing data sets were very good, having almost the same deviations. The least deviation was noted for the cutting force, whilst the most deviation, as expected was for tool life. The obtained models could then be used for later optimization of the turning process

    Volume-Rendering Optical Coherence Tomography Angiography of Macular Telangiectasia Type 2

    No full text
    PURPOSE: To evaluate the vascular structure of eyes with macular telangiectasia type 2 (MacTel2) using volume-rendered optical coherence tomography angiography (OCTA). DESIGN: Retrospective cross-sectional study. PARTICIPANTS: A total of 14 consecutive patients (20 eyes) with MacTel2 who had a signal strength score \u3e/=55 and could maintain fixation during the scan process. METHODS: The eyes were scanned using optical coherence tomography with split-spectrum amplitude decorrelation techniques to derive flow information. Data were extracted and used to create volume-rendered images of the retinal vasculature that could be rotated about 3 different axes for evaluation. MAIN OUTCOME MEASURES: Descriptive appraisal of the vascular abnormalities associated with MacTel2. RESULTS: Vessels posterior to the outer boundary of the deep retinal plexus were secondary to retinal thinning, vascular invasion, or a combination of both. These vessels had the same shape and distribution as the late staining seen during conventional fluorescein angiography. Lateral contraction in the temporal macula in 5 eyes created an appearance of vessels radiating from a central locus, which was the site of a right angle vein. Loss of macular tissue as part of the disease process led to a central amalgamation of the inner vascular plexus and the deep vascular plexus, which appeared to be in a state of decline. Subretinal neovascularization originated from the retinal circulation but involved not only the subretinal space but also could infiltrate the remaining, thinned, retina. CONCLUSIONS: Volume rendering of OCTA information preserves the 3-dimensional relationships among retinal vascular layers and provides opportunities to visualize retinal vascular abnormalities in unprecedented detail. The retinal vascular leakage and invasion in MacTel2 may arise as a consequence of loss of control with depletion of Muller cells and exposure of the remaining retinal vessels to the more hypoxic environment near the inner segments of the photoreceptors

    Multifocal choroiditis without panuveitis: clinical characteristics and progression

    No full text
    PURPOSE: To describe the clinical characteristics and progression of patients with multifocal choroiditis lesions who had minimal or no evidence of anterior uveitis and/or vitritis. METHODS: Retrospective, observational, single-center consecutive case series. Clinical histories, examination, and multimodal imaging findings were analyzed. RESULTS: Sixty-five eyes of 41 patients were identified. The mean age at diagnosis was 38.4 years (median, 35 years; range, 15-81 years), and 70.7% of the patients were women. Involvement was bilateral in 21 patients (51.2%) at presentation. The 60-month bilateral event-free survival was 75.0% (95% confidence interval, 49.8-91.2%). The mean visual acuity was 20/46 (median, 20/25; range, 20/20 to count fingers at 2 feet) at presentation and 20/42 (median, 20/25; range, 20/20-5/400) at the last recorded visit. The 60-month 20/50 or worse event-free survival was 100%. Between the first presentation and final follow-up (a mean duration of 92.6 months; range, 0-343 months), 46.7% of the eyes developed new or larger chorioretinal spots and 32.6% developed new or recurrent choroidal neovascularization. The 60-month choroidal neovascularization event-free survival was 68.1% (95% confidence interval, 39.2-85.4%). CONCLUSION: Patients with multifocal choroiditis lesions, but with minimal or no anterior uveitis or vitritis, tended to be young women. Approximately half of the patients presented with bilateral involvement, which is less than has been reported in most case series of multifocal choroiditis with panuveitis. One quarter of all unilaterally affected patients will develop bilateral involvement by 60 months
    corecore