130,376 research outputs found

    Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    Get PDF
    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach

    Get PDF
    This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms

    Measurement of two-qubit states by quantum point contacts

    Full text link
    We solve the master equations of two charged qubits measured by two serially coupled quantum point contacts (QPCs). We describe two-qubit dynamics by comparing entangled states with product states, and show that the QPC current can be used for reading out results of quantum calculations and providing evidences of two-qubit entanglement. We also calculate the concurrence of the two qubits as a function of dephasing rate that originates from the measurement. We conclude that coupled charge qubits can be effectively detected by a QPC-based detector.Comment: 10 pages, 8 figures. Full paper is prepare

    A Fast Conservative Spectral Solver For The Nonlinear Boltzmann Collision Operator

    Get PDF
    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam.. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M(2)N(4)logN) from the O(N-6) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results.Mathematic

    Phonon Squeezed States Generated by Second Order Raman Scattering

    Full text link
    We study squeezed states of phonons, which allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. We investigate the generation of squeezed phonon states using a second order Raman scattering process. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE
    • …
    corecore