47 research outputs found
Expression Profile of Nuclear Receptors along Male Mouse Nephron Segments Reveals a Link between ERRÎČ and Thick Ascending Limb Function
The nuclear receptor family orchestrates many functions related to reproduction, development, metabolism, and adaptation to the circadian cycle. The majority of these receptors are expressed in the kidney, but their exact quantitative localization in this ultrastructured organ remains poorly described, making it difficult to elucidate the renal function of these receptors. In this report, using quantitative PCR on microdissected mouse renal tubules, we established a detailed quantitative expression map of nuclear receptors along the nephron. This map can serve to identify nuclear receptors with specific localization. Thus, we unexpectedly found that the estrogen-related receptor ÎČ (ERRÎČ) is expressed predominantly in the thick ascending limb (TAL) and, to a much lesser extent, in the distal convoluted tubules. In vivo treatment with an ERR inverse agonist (diethylstilbestrol) showed a link between this receptor family and the expression of the Na+,K+-2Clâ cotransporter type 2 (NKCC2), and resulted in phenotype presenting some similarities with the Bartter syndrom (hypokalemia, urinary Na+ loss and volume contraction). Conversely, stimulation of ERRÎČ with a selective agonist (GSK4716) in a TAL cell line stimulated NKCC2 expression. All together, these results provide broad information regarding the renal expression of all members of the nuclear receptor family and have allowed us to identify a new regulator of ion transport in the TAL segments
«La relation de limitation et dâexception dans le français dâaujourdâhui : exceptĂ©, sauf et hormis comme pivots dâune relation algĂ©brique »
Lâanalyse des emplois prĂ©positionnels et des emplois conjonctifs dâ âexceptĂ©â, de âsaufâ et dâ âhormisâ permet dâenvisager les trois prĂ©positions/conjonctions comme le pivot dâun binĂŽme, comme la plaque tournante dâune structure bipolaire. PlacĂ©es au milieu du binĂŽme, ces prĂ©positions sont forcĂ©es par leur sĂ©mantisme originaire dĂ»ment mĂ©taphorisĂ© de jouer le rĂŽle de marqueurs dâinconsĂ©quence systĂ©matique entre lâĂ©lĂ©ment se trouvant Ă leur gauche et celui qui se trouve Ă leur droite. Lâopposition qui surgit entre les deux Ă©lĂ©ments nâest donc pas une incompatibilitĂ© naturelle, intrinsĂšque, mais extrinsĂšque, induite. Dans la plupart des cas (emplois limitatifs), cette opposition prend la forme dâun rapport entre une « classe » et le « membre (soustrait) de la classe », ou bien entre un « tout » et une « partie » ; dans dâautres (emplois exceptifs), cette opposition se manifeste au contraire comme une attaque de front portĂ©e par un « tout » Ă un autre « tout ». De plus, lâinconsĂ©quence induite mise en place par la prĂ©position/conjonction paraĂźt, en principe, tout Ă fait insurmontable. Dans lâassertion « les Ă©cureuils vivent partout, sauf en Australie » (que lâon peut expliciter par « Les Ă©cureuils vivent partout, sauf [quâils ne vivent pas] en Australie »), la prĂ©position semble en effet capable dâimpliquer le prĂ©dicat principal avec signe inverti, et de bĂątir sur une telle implication une sorte de sous Ă©noncĂ© qui, Ă la rigueur, est totalement inconsĂ©quent avec celui qui le prĂ©cĂšde (si « les Ă©cureuils ne vivent pas en Australie », le fait quâils « vivent partout » est faux). NĂ©anmoins, lâanalyse montre quâalors que certaines de ces oppositions peuvent enfin ĂȘtre dĂ©passĂ©es, dâautres ne le peuvent pas. Câest, respectivement, le cas des relations limitatives et des relations exceptives. La relation limitative, impliquant le rapport « tout » - « partie », permet de rĂ©soudre le conflit dans les termes dâune somme algĂ©brique entre deux sous Ă©noncĂ©s pourvus de diffĂ©rent poids informatif et de signe contraire. Les valeurs numĂ©riques des termes de la somme Ă©tant dĂ©sĂ©quilibrĂ©es, le rĂ©sultat est toujours autre que zĂ©ro. La relation exceptive, au contraire, qui nâimplique pas le rapport « tout » - « partie », nâest pas capable de rĂ©soudre le conflit entre deux sous Ă©noncĂ©s pourvus du mĂȘme poids informatif et en mĂȘme temps de signe contraire : les valeurs numĂ©riques des termes de la somme Ă©tant symĂ©triques et Ă©gales, le rĂ©sultat sera toujours Ă©quivalent Ă zĂ©ro