4 research outputs found

    Volumes of polytopes in spaces of constant curvature

    Full text link
    We overview the volume calculations for polyhedra in Euclidean, spherical and hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary tetrahedron in H3H^3 and S3S^3. We also present some results, which provide a solution for Seidel problem on the volume of non-Euclidean tetrahedron. Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmagupta formula for the area of such quadrilateral. We also present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference
    corecore