4 research outputs found
Volumes of polytopes in spaces of constant curvature
We overview the volume calculations for polyhedra in Euclidean, spherical and
hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary
tetrahedron in and . We also present some results, which provide a
solution for Seidel problem on the volume of non-Euclidean tetrahedron.
Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle,
horocycle or one branch of equidistant curve. This is a natural hyperbolic
analog of the cyclic quadrilateral in the Euclidean plane. We find a few
versions of the Brahmagupta formula for the area of such quadrilateral. We also
present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference