91,560 research outputs found

    The Wess-Zumino term and quantum tunneling

    Get PDF
    The significance of the Wess--Zumino term in spin tunneling is explored, and a formula is established for the splitting of energy levels of a particle with large fermionic spin as an applied magnetic field is switched on.Comment: Latex, 7 page

    Calculation of Spin Tunneling Effects in the Presence of an Applied Magnetic Field

    Get PDF
    The tunneling splitting of the energy levels of a ferromagnetic particle in the presence of an applied magnetic field - previously derived only for the ground state with the path integral method - is obtained in a simple way from Schroedinger theory. The origin of the factors entering the result is clearly understood, in particular the effect of the asymmetry of the barriers of the potential. The method should appeal particularly to experimentalists searching for evidence of macroscopic spin tunneling.Comment: 10 pages, LaTex, 4 figures included using graphic

    A neural network for mining large volumes of time series data

    Get PDF
    Efficiently mining large volumes of time series data is amongst the most challenging problems that are fundamental in many fields such as industrial process monitoring, medical data analysis and business forecasting. This paper discusses a high-performance neural network for mining large time series data set and some practical issues on time series data mining. Examples of how this technology is used to search the engine data within a major UK eScience Grid project (DAME) for supporting the maintenance of Rolls-Royce aero-engine are presented

    Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles

    Full text link
    A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual (vacuum) instanton is recovered. The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.Comment: 18 pages, LaTex, 1 figur

    Quantum Tunneling of Spin Particles in Periodic Potentials with Asymmetric Twin Barriers

    Full text link
    The tunneling effect of a periodic potential with an asymmetric twin barrier per period is calculated using the instanton method. The model is derived from the Hamiltonian of a small ferromagnetic particle in an external magnetic field using the spin-coherent-state path integral. The instantons in two neighbouring barriers differ and lead to different level shifts △ϵ1,△ϵ2\triangle\epsilon_1, \triangle\epsilon_2. We derive with Bloch theory the energy spectrum which has formally the structure of an energy band. The spectrum depends on both level shifts. The removal of Kramer's degeneracy by an external magnetic field is discussed. In addition we find a new kind of quenching of macroscopic quantum coherence which is irrelevant to Kramer's degeneracy.Comment: 18 pages, LaTex, one figur

    Optimal Paths in Large Deviations of Symmetric Reflected Brownian Motion in the Octant

    Get PDF
    We study the variational problem that arises from consideration of large deviations for semimartingale reflected Brownian motion (SRBM) in the positive octant. Due to the difficulty of the general problem, we consider the case in which the SRBM has rotationally symmetric parameters. In this case, we are able to obtain conditions under which the optimal solutions to the variational problem are paths that are gradual (moving through faces of strictly increasing dimension) or that spiral around the boundary of the octant. Furthermore, these results allow us to provide an example for which it can be verified that a spiral path is optimal. For rotationally symmetric SRBM's, our results facilitate the simplification of computational methods for determining optimal solutions to variational problems and give insight into large deviations behavior of these processes

    Nonvacuum pseudoparticles, quantum tunneling and metastability

    Get PDF
    It is shown that nonvacuum pseudoparticles can account for quantum tunneling and metastability. In particular the saddle-point nature of the pseudoparticles is demonstrated, and the evaluation of path-integrals in their neighbourhood. Finally the relation between instantons and bounces is used to derive a result conjectured by Bogomolny and Fateyev.Comment: Latex, 16 pages, no figure
    • …
    corecore