748 research outputs found
Interplay between density and superconducting quantum critical fluctuations
We consider the case of a density-driven metal-superconductor transition in
the proximity of an electronic phase separation. In particular we investigate
the interplay between superconducting fluctuations and density fluctuations,
which become quantum critical when the electronic phase separation vanishes at
zero temperature into a quantum critical point. In this situation the critical
dynamical density fluctuations strongly affect the dynamics of the Cooper pair
fluctuations, which acquire a more singular character with a z=3 dynamical
critical index. This gives rise to a scenario that possibly rules the
disappearance of superconductivity when the electron density is reduced by
elecrostatic gating at the LaAlO3/SrTiO3 interface.Comment: 5 pages, 4 figure
Phase separation from electron confinement at oxide interfaces
Oxide heterostructures are of great interest both for fundamental and
applicative reasons. In particular the two-dimensional electron gas at the
LaAlO/SrTiO or LaTiO/SrTiO interfaces displays many different
physical properties and functionalities. However there are clear indications
that the interface electronic state is strongly inhomogeneous and therefore it
is crucially relevant to investigate possible intrinsic electronic mechanisms
underlying this inhomogeneity. Here the electrostatic potential confining the
electron gas at the interface is calculated self-consistently, finding that the
electron confinement at the interface may induce phase separation, to avoid a
thermodynamically unstable state with a negative compressibility. This provides
a generic robust and intrinsic mechanism for the experimentally observed
inhomogeneous character of these interfaces.Comment: 8 pages and 4 figure
c-axis Josephson Tunneling in Twinned YBCO Crystals
Josephson tunneling between YBCO and Pb with the current flowing along the
c-axis of the YBCO is persumed to come from an s-wave component of the
superconductivity of the YBCO. Experiments on multi-twin samples are not
entirely consistent with this hypothesis. The sign change of the s-wave order
parameter across the N_T twin boundaries should give cancelations, resulting in
a small tunneling current. The actual current is larger than this.
We present a theory of this unexpectedly large current based upon a surface
effect: disorder-induced supression of the d-wave component at the (001)
surface leads to s-wave coherence across the twin boundaries and a non-random
tunneling current. We solve the case of an ordered array of d+s and d-s twins,
and estimate that the twin size at which s-wave surface coherence occurs is
consistent with typical sizes observed in experiments. In this picture, there
is a phase difference of between different surfaces of the material. We
propose a corner junction experiment to test this picture.Comment: 5 pages, 4 eps figure
High-Quality Planar high-Tc Josephson Junctions
Reproducible high-Tc Josephson junctions have been made in a rather simple
two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is
firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through
a gold mask such as the non-protected part becomes insulating. A lower Tc part
is then defined within the bridge by irradiating with a much lower fluence
through a narrow slit (20 nm) opened in a standard electronic photoresist.
These planar junctions, whose settings can be finely tuned, exhibit
reproducible and nearly ideal Josephson characteristics. This process can be
used to produce complex Josephson circuits.Comment: 4 pages, 5 figures, to be published in Applied Physics Letter
Inhomogeneous multi-carrier superconductivity at LaXO3/SrTiO3 (X=Al or Ti) oxide interfaces
Several experiments reveal the inhomogeneous character of the superconducting
state that occurs when the carrier density of the two-dimensional electron gas
formed at the LaXO3/SrTiO3 (X=Al or Ti) interface is tuned above a threshold
value by means of gating. Re-analyzing previous measurements, that highlight
the presence of two kinds of carriers, with low and high mobility, we shall
provide a description of multi-carrier magneto-transport in an inhomogeneous
two-dimensional electron gas, gaining insight into the properties of the
physics of the systems under investigation. We shall then show that the
measured resistance, superfluid density, and tunneling spectra result from the
percolative connection of superconducting "puddles" with randomly distributed
critical temperatures, embedded in a weakly localizing metallic matrix. We
shall also show that this scenario is consistent with the characteristics of
the superconductor-to-metal transition driven by a magnetic field. A
multi-carrier description of the superconducting state, within a weak-coupling
BCS-like model, will be finally discussed.Comment: 12 pages 10 figure
- …