119 research outputs found

    The Effect of Treatment of Acidosis on Calcium Balance in Patients with Chronic Azotemic Renal Disease

    Get PDF
    Small but statistically significant negative calcium balances were found in each of eight studies in seven patients with chronic azotemic renal disease when stable metabolic acidosis was present. Only small quantities of calcium were excreted in the urine, but fecal calcium excretion equaled or exceeded dietary intake. Complete and continuous correction of acidosis by NaHCO3 therapy reduced both urinary and fecal calcium excretion and produced a daily calcium balance indistinguishable from zero. Apparent acid retention was found throughout the studies during acidosis, despite no further reduction of the serum bicarbonate concentration. The negative calcium balances that accompanied acid retention support the suggestion that slow titration of alkaline bone salts provides an additional buffer reservoir in chronic metabolic acidosis. The treatment of metabolic acidosis prevented further calcium losses but did not induce net calcium retention. It is suggested that the normal homeostatic responses of the body to the alterations in ionized calcium and calcium distribution produced by raising the serum bicarbonate might paradoxically retard the repair of skeletal calcium deficits

    Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.</p> <p>The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults.</p> <p>Methods</p> <p>Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index.</p> <p>Results</p> <p>There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders.</p> <p>Conclusion</p> <p>Urine pH and urine acid excretion do not predict osteoporosis risk.</p

    Medical treatment of pediatric urolithiasis

    Get PDF
    In recent years the incidence of pediatric stone disease has increased several fold, mostly due to hypercalciuria and hypocitraturia. The goal of medical treatment is to protect the patient from formation of new stones and expansion of existing ones. The non-pharmacological means to address stone disease include high fluid intake and, frequently, modification of nutritional habits. The pharmacological treatment is based on the chemical composition of the stone and the biochemical abnormalities causing its formation; hence, chemical analysis of the stone, urine and blood is of paramount importance and should be done when the first stone is detected. This review discusses the current options of medical treatment of pediatric urolithiasis

    Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.</p> <p>Methods/design</p> <p>Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.</p> <p>The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.</p> <p>Discussion</p> <p>In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.</p> <p>Trial registration</p> <p>ISRCTN33941607</p

    Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acid-ash hypothesis posits that increased excretion of "acidic" ions derived from the diet, such as phosphate, contributes to net acidic ion excretion, urine calcium excretion, demineralization of bone, and osteoporosis. The public is advised by various media to follow an alkaline diet to lower their acidic ion intakes. The objectives of this meta-analysis were to quantify the contribution of phosphate to bone loss in healthy adult subjects; specifically, a) to assess the effect of supplemental dietary phosphate on urine calcium, calcium balance, and markers of bone metabolism; and to assess whether these affects are altered by the b) level of calcium intake, c) the degree of protonation of the phosphate.</p> <p>Methods</p> <p>Literature was identified through computerized searches regarding phosphate with surrogate and/or direct markers of bone health, and was assessed for methodological quality. Multiple linear regression analyses, weighted for sample size, were used to combine the study results. Tests of interaction included stratification by calcium intake and degree of protonation of the phosphate supplement.</p> <p>Results</p> <p>Twelve studies including 30 intervention arms manipulated 269 subjects' phosphate intakes. Three studies reported net acid excretion. All of the meta-analyses demonstrated significant decreases in urine calcium excretion in response to phosphate supplements whether the calcium intake was high or low, regardless of the degree of protonation of the phosphate supplement. None of the meta-analyses revealed lower calcium balance in response to increased phosphate intakes, whether the calcium intake was high or low, or the composition of the phosphate supplement.</p> <p>Conclusion</p> <p>All of the findings from this meta-analysis were contrary to the acid ash hypothesis. Higher phosphate intakes were associated with decreased urine calcium and increased calcium retention. This meta-analysis did not find evidence that phosphate intake contributes to demineralization of bone or to bone calcium excretion in the urine. Dietary advice that dairy products, meats, and grains are detrimental to bone health due to "acidic" phosphate content needs reassessment. There is no evidence that higher phosphate intakes are detrimental to bone health.</p

    Hydrochlorothiazide inhibits bone resorption in men despite experimentally elevated serum 1,25-dihydroxyvitamin D concentrations

    Get PDF
    Hydrochlorothiazide inhibits bone resorption in men despite experimentally elevated serum 1,25-dihydroxy vitamin D concentrations. We evaluated the effects of hydrochlorothiazide administration in relation to Ca balance, the PTH and vitamin D endocrine systems, acid-base balance, and bone. We studied six healthy men fed constant diets providing only 5.1 ± 0.7 SD mmoles Ca/day. Three of the men were also given calcitriol, 0.5 µg 6-hrly throughout their studies. All subjects were observed during 18 control days and then during 18 days of hydrochlorothiazide (HTZ) administration, 25mg 12-hrly. Observations during control days 11 through 16 were compared to those during days 7 through 18 of HTZ administration, inclusively. Directional changes during HTZ did not differ among subjects not given or given calcitriol. For all six subjects, control net intestinal Ca absorption, serum 1,25-(OH)2-D concentrations, serum iPTH concentrations, and daily urine cAMP excretion averaged 0.5 ± 2.2 mmoles/day, 162 ± 51pM, 4.3 ± 2.2 µl Eq/ml and 4.2 ± 0.9 µmoles/day, respectively; none changed during HTZ. As expected, HTZ administration was accompanied by a fall in urinary Ca excretion, averaging - 1.4 ± 0.8 mmoles/day; P < 0.01. HTZ administration was also accompanied by less negative Ca balances, averaging + 1.6 ± 1.0 mmoles/day; P < 0.025, and by a fall in daily urinary hydroxy proline excretion averaging -0.13 P < 0.09 mmoles/day; P < 0.025. We interpret these data to indicate that HTZ administration is accompanied by an inhibition of bone resorption. HTZ administration also raised serum HCO3 concentrations by + 2.7 ± 0.5 mEq/liter; P < 0.001 and blood pH by + 0.05 ± 0.02 units; P < 0.005. Since HTZ administration did not change either serum iPTH or 1,25-(OH)2-D concentrations nor urinary cAMP excretion, inhibition of bone resorption may be mediated by either relative alkalosis, a reduced skeletal sensitivity to PTH or 1,25-(OH)2-D, or, possibly, by a direct effect of HTZ on bone
    • …
    corecore