2,149 research outputs found
An In Depth Study into Using EMI Signatures for Appliance Identification
Energy conservation is a key factor towards long term energy sustainability.
Real-time end user energy feedback, using disaggregated electric load
composition, can play a pivotal role in motivating consumers towards energy
conservation. Recent works have explored using high frequency conducted
electromagnetic interference (EMI) on power lines as a single point sensing
parameter for monitoring common home appliances. However, key questions
regarding the reliability and feasibility of using EMI signatures for
non-intrusive load monitoring over multiple appliances across different sensing
paradigms remain unanswered. This work presents some of the key challenges
towards using EMI as a unique and time invariant feature for load
disaggregation. In-depth empirical evaluations of a large number of appliances
in different sensing configurations are carried out, in both laboratory and
real world settings. Insights into the effects of external parameters such as
line impedance, background noise and appliance coupling on the EMI behavior of
an appliance are realized through simulations and measurements. A generic
approach for simulating the EMI behavior of an appliance that can then be used
to do a detailed analysis of real world phenomenology is presented. The
simulation approach is validated with EMI data from a router. Our EMI dataset -
High Frequency EMI Dataset (HFED) is also released
Probing Spin-Polarized Currents in the Quantum Hall Regime
An experiment to probe spin-polarized currents in the quantum Hall regime is
suggested that takes advantage of the large Zeeman-splitting in the
paramagnetic diluted magnetic semiconductor zinc manganese selenide
(ZnMnSe). In the proposed experiment spin-polarized electrons are
injected by ZnMnSe-contacts into a gallium arsenide (GaAs) two-dimensional
electron gas (2DEG) arranged in a Hall bar geometry. We calculated the
resulting Hall resistance for this experimental setup within the framework of
the Landauer-B\"uttiker formalism. These calculations predict for 100%
spininjection through the ZnMnSe-contacts a Hall resistance twice as high as in
the case of no spin-polarized injection of charge carriers into a 2DEG for
filling factor . We also investigated the influence of the equilibration
of the spin-polarized electrons within the 2DEG on the Hall resistance. In
addition, in our model we expect no coupling between the contact and the 2DEG
for odd filling factors of the 2DEG for 100% spininjection, because of the
opposite sign of the g-factors of ZnMnSe and GaAs.Comment: 7 pages, 5 figure
Ramsey's Method of Separated Oscillating Fields and its Application to Gravitationally Induced Quantum Phaseshifts
We propose to apply Ramsey's method of separated oscillating fields to the
spectroscopy of the quantum states in the gravity potential above a vertical
mirror. This method allows a precise measurement of quantum mechanical
phaseshifts of a Schr\"odinger wave packet bouncing off a hard surface in the
gravitational field of the earth. Measurements with ultra-cold neutrons will
offer a sensitivity to Newton's law or hypothetical short-ranged interactions,
which is about 21 orders of magnitude below the energy scale of
electromagnetism.Comment: 7 pages, 6 figure
Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States
We consider the multi-channel inverse scattering problem in one-dimension in
the presence of thresholds and bound states for a potential of finite support.
Utilizing the Levin representation, we derive the general Marchenko integral
equation for N-coupled channels and show that, unlike to the case of the radial
inverse scattering problem, the information on the bound state energies and
asymptotic normalization constants can be inferred from the reflection
coefficient matrix alone. Thus, given this matrix, the Marchenko inverse
scattering procedure can provide us with a unique multi-channel potential. The
relationship to supersymmetric partner potentials as well as possible
applications are discussed. The integral equation has been implemented
numerically and applied to several schematic examples showing the
characteristic features of multi-channel systems. A possible application of the
formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure
Determination of two-body potentials from n-body spectra
We show how the two-body potential may be uniquely determined from n-body
spectra where the hypercentral approximation is valid. We illustrate this by
considering an harmonic oscillator potential which has been altered by changing
the energy or normalisation constant of the ground state of the n-body system
and finding how this modifies the two-body potential. It is shown that with
increasing number of particles the spectrum must be known more precisely to
obtain the two-body potential to the same degree of accuracy.Comment: 13 pages of text (LATEX), 3 figures (not included, available from
authors), NIKHEF-93-P
Phase shift effective range expansion from supersymmetric quantum mechanics
Supersymmetric or Darboux transformations are used to construct local phase
equivalent deep and shallow potentials for partial waves. We
associate the value of the orbital angular momentum with the asymptotic form of
the potential at infinity which allows us to introduce adequate long-distance
transformations. The approach is shown to be effective in getting the correct
phase shift effective range expansion. Applications are considered for the
and partial waves of the neutron-proton scattering.Comment: 6 pages, 3 figures, Revtex4, version to be publised in Physical
Review
Detecting unambiguously non-Abelian geometric phases with trapped ions
We propose for the first time an experimentally feasible scheme to disclose
the noncommutative effects induced by a light-induced non-Abelian gauge
structure with trapped ions. Under an appropriate configuration, a true
non-Abelian gauge potential naturally arises in connection with the geometric
phase associated with two degenerated dark states in a four-state atomic system
interacting with three pulsed laser fields. We show that the population in
atomic state at the end of a composed path formed by two closed loops and
in the parameter space can be significantly different from the composed
counter-ordered path. This population difference is directly induced by the
noncommutative feature of non-Abelian geometric phases and can be detected
unambiguously with current technology.Comment: 6 page
- …
