4,262 research outputs found
Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods
Recent works showed that pressure-robust modifications of mixed finite
element methods for the Stokes equations outperform their standard versions in
many cases. This is achieved by divergence-free reconstruction operators and
results in pressure independent velocity error estimates which are robust with
respect to small viscosities. In this paper we develop a posteriori error
control which reflects this robustness.
The main difficulty lies in the volume contribution of the standard
residual-based approach that includes the -norm of the right-hand side.
However, the velocity is only steered by the divergence-free part of this
source term. An efficient error estimator must approximate this divergence-free
part in a proper manner, otherwise it can be dominated by the pressure error.
To overcome this difficulty a novel approach is suggested that uses arguments
from the stream function and vorticity formulation of the Navier--Stokes
equations. The novel error estimators only take the of the
right-hand side into account and so lead to provably reliable, efficient and
pressure-independent upper bounds in case of a pressure-robust method in
particular in pressure-dominant situations. This is also confirmed by some
numerical examples with the novel pressure-robust modifications of the
Taylor--Hood and mini finite element methods
Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study
The Field Induced Spin Density Wave phases observed in quasi-one-dimensional
conductors of the Bechgaard salts family under magnetic field exhibit both Spin
Density Wave order and a Quantized Hall Effect, which may exhibit sign
reversals. The original nature of the condensed phases is evidenced by the
collective mode spectrum. Besides the Goldstone modes, a quasi periodic
structure of Magneto-Roton modes, predicted to exist for a monotonic sequence
of Hall Quantum numbers, is confirmed, and a second mode is shown to exist
within the single particle gap. We present numerical estimates of the
Magneto-Roton mode energies in a generic case of the monotonic sequence. The
mass anisotropy of the collective mode is calculated. We show how differently
the MR spectrum evolves with magnetic field at low and high fields. The
collective mode spectrum should have specific features, in the sign reversed
"Ribault Phase", as compared to modes of the majority sign phases. We
investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat
preprint cond-mat/9709210, but cannot be described as a replaced version,
because it contains a significant amount of new material dealing with the
instability line and with the topic of Ribault Phases. It contains 13 figures
(.ps files
Not So Civil Commitment: A Proposal for Statutory Reform Grounded in Procedural Justice
Every year, millions of Americans struggle with serious mental illness. Of them, thousands experience civil, or involuntary, commitment—that is, hospitals invoke the coercive power of the state to force these individuals into psychiatric hospitals against their will. Whether someone requires hospitalization is a complex question of psychology, medicine, and substantive law.
But the process of civil commitment itself is troubling. Across the board, states fail to afford those facing civil commitment meaningful procedural protections. Current state laws subject individuals facing commitment to extended periods of confinement with little to no judicial intervention. Indeed, individuals facing commitment may wait weeks or more for a judicial hearing. And when hearings do occur, they start and end in a matter of minutes. Within those few minutes, little advocacy occurs: lawyers are often passive, judges are often impatient, and respondents rarely have the chance to speak. Worse, some states fail to provide hearings at all. In sum, civil commitment occurs in “pitch darkness.”
Civil commitment procedure should limit, not compound, these harms. Applying fundamentals of procedural justice, this Note proposes three statutory reforms to increase fairness to those experiencing civil commitment. First, this Note calls for states to hold probable cause hearings within seventy-two hours of confinement. Second, states should explicitly define the duties and role of counsel within commitment proceedings. Third, states should task community mental health boards with monitoring the commitment process to increase compliance with the law and bring visibility to these proceedings. Ultimately, this Note aims to promote procedural justice for those facing civil commitment and rekindle a conversation about how states treat those experiencing serious mental illness
Electronic instabilities of a Hubbard model approached as a large array of coupled chains: competition between d-wave superconductivity and pseudogap phase
We study the electronic instabilities in a 2D Hubbard model where one of the
dimensions has a finite width, so that it can be considered as a large array of
coupled chains. The finite transverse size of the system gives rise to a
discrete string of Fermi points, with respective electron fields that, due to
their mutual interaction, acquire anomalous scaling dimensions depending on the
point of the string. Using bosonization methods, we show that the anomalous
scaling dimensions vanish when the number of coupled chains goes to infinity,
implying the Fermi liquid behavior of a 2D system in that limit. However, when
the Fermi level is at the Van Hove singularity arising from the saddle points
of the 2D dispersion, backscattering and Cooper-pair scattering lead to the
breakdown of the metallic behavior at low energies. These interactions are
taken into account through their renormalization group scaling, studying in
turn their influence on the nonperturbative bosonization of the model. We show
that, at a certain low-energy scale, the anomalous electron dimension diverges
at the Fermi points closer to the saddle points of the 2D dispersion. The
d-wave superconducting correlations become also large at low energies, but
their growth is cut off as the suppression of fermion excitations takes place
first, extending progressively along the Fermi points towards the diagonals of
the 2D Brillouin zone. We stress that this effect arises from the vanishing of
the charge stiffness at the Fermi points, characterizing a critical behavior
that is well captured within our nonperturbative approach.Comment: 13 pages, 7 figure
Development of a dynamic pressure calibration technique
The report deals with work continuing on the development of a method of producing sinusoidally varying pressures of at least 34 kPa zero-to-peak with amplitude variations within plus or minus 5% up to 2 kHz for the dynamic calibration of pressure transducers. Sinusoidally varying pressures of 34 kPa zero-to-peak were produced between 40 Hz and 750 Hz by vibrating a 10-cm column of a dimethyl siloxane liquid at 36gn zero-to-peak. Damping of the liquid column was accomplished by packing the fixture tube with a number of smaller diameter tubes
Multiple sclerosis, the measurement of disability and access to clinical trial data
Background: Inferences about long-term effects of therapies in multiple sclerosis (MS) have been based on surrogate markers studied in short-term trials. Nevertheless, MS trials have been getting steadily shorter despite the lack of a consensus definition for the most important clinical outcome - unremitting progression of disability. Methods: We have examined widely used surrogate markers of disability progression in MS within a unique database of individual patient data from the placebo arms of 31 randomised clinical trials. Findings: Definitions of treatment failure used in secondary progressive MS trials include much change unrelated to the target of unremitting disability. In relapsing-remitting MS, disability progression by treatment failure definitions was no more likely than similarly defined improvement for these disability surrogates. Existing definitions of disease progression in relapsing-remitting trials encompass random variation, measurement error and remitting relapses and appear not to measure unremitting disability. Interpretation: Clinical surrogates of unremitting disability used in relapsing -remitting trials cannot be validated. Trials have been too short and/or degrees of disability change too small to evaluate unremitting disability outcomes. Important implications for trial design and reinterpretation of existing trial results have emerged long after regulatory approval and widespread use of therapies in MS, highlighting the necessity of having primary trial data in the public domain
Development of dynamic calibration methods for POGO pressure transducers
Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other
- …