597 research outputs found

    Application of the method of multiple scales to unravel energy exchange in nonlinear locally resonant metamaterials

    Get PDF
    In this paper, the effect of weak nonlinearities in 1D locally resonant metamaterials is investigated via the method of multiple scales. Commonly employed to the investigate the effect of weakly nonlinear interactions on the free wave propagation through a phononic structure or on the dynamic response of a Duffing oscillator, the method of multiple scales is here used to investigate the forced wave propagation through locally resonant metamaterials. The perturbation approach reveals that energy exchange may occur between propagative and evanescent waves induced by quadratic nonlinear local interaction

    A novel co-locational and concurrent fNIRS/EEG measurement system: design and initial results.

    Get PDF
    We describe here the design, set-up and first time classification results of a novel co-locational functional Near- Infrared Spectroscopy/Electroencephalography (fNIRS/EEG) recording device suitable for brain computer interfacing applications using neural-hemodynamic signals. Our dual-modality system recorded both hemodynamic and electrical activity at seven sites over the motor cortex during an overt finger-tapping task. Data was collected from two subjects and classified offline using Linear Discriminant Analysis (LDA) and Leave-One-Out Cross-Validation (LOOCV). Classification of fNIRS features, EEG features and a combination of fNIRS/EEG features were performed separately. Results illustrate that classification of the combined fNIRS/EEG feature space offered average improved performance over classification of either feature space alone. The complementary nature of the physiological origin of the dual measurements offer a unique and information rich signal for a small measurement area of cortex. We feel this technology may be particularly useful in the design of BCI devices for the augmentation of neurorehabilitation therapy

    Epistatic interactions of genes influence within-individual variation of physical activity traits in mice

    Get PDF
    A number of quantitative trait loci (QTLs) recently have been discovered that affect various activity traits in mice, but their collective impact does not appear to explain the consistently moderate to high heritabilities for these traits. We previously suggested interactions of genes, or epistasis, might account for additional genetic variability of activity, and tested this for the average distance, duration and speed run by mice during a 3 week period. We found abundant evidence for epistasis affecting these traits, although, recognized that epistatic effects may well vary within individuals over time. We therefore conducted a full genome scan for epistatic interactions affecting these traits in each of seven three-day intervals. Our intent was to assess the extent and trends in epistasis affecting these traits in each of the intervals. We discovered a number of epistatic interactions of QTLs that influenced the activity traits in the mice, the majority of which were not previously found and appeared to affect the activity traits (especially distance and speed) primarily in the early or in the late age intervals. The overall impact of epistasis was considerable, its contribution to the total phenotypic variance varying from an average of 22–35% in the three traits across all age intervals. It was concluded that epistasis is more important than single-locus effects of genes on activity traits at specific ages and it is therefore an essential component of the genetic architecture of physical activity

    Functional Near Infrared Spectroscopy (fNIRS) synthetic data generation

    Get PDF
    Accurately modelled computer-generated data can be used in place of real-world signals for the design, test and validation of signal processing techniques in situations where real data is difficult to obtain. Bio-signal processing researchers interested in working with fNIRS data are restricted due to the lack of freely available fNIRS data and by the prohibitively expensive cost of fNIRS systems. We present a simplified mathematical description and associated MATLAB implementation of model-based synthetic fNIRS data which could be used by researchers to develop fNIRS signal processing techniques. The software, which is freely available, allows users to generate fNIRS data with control over a wide range of parameters and allows for fine-tuning of the synthetic data. We demonstrate how the model can be used to generate raw fNIRS data similar to recorded fNIRS signals. Signal processing steps were then applied to both the real and synthetic data. Visual comparisons between the temporal and spectral properties of the real and synthetic data show similarity. This paper demonstrates that our model for generating synthetic fNIRS data can replicate real fNIRS recordings

    Sex-, Diet-, and Cancer-Dependent Epistatic Effects on Complex Traits in Mice

    Get PDF
    The genetic basis of quantitative traits such as body weight and obesity is complex, with several hundred quantitative trait loci (QTLs) known to affect these and related traits in humans and mice. It also has become increasingly evident that the single-locus effects of these QTLs vary considerably depending on factors such as the sex of the individuals and their dietary environment, and we were interested to know whether this context-dependency also applies to two-locus epistatic effects of QTLs as well. We therefore conducted a genome scan to search for epistatic effects on 13 different weight and adiposity traits in an F2 population of mice (created from an original intercross of the FVB strain with M16i, a polygenic obesity model) that were fed either a control or a high-fat diet and half of which harbored a transgene (PyMT) that caused the development of metastatic mammary cancer. We used a conventional interval mapping approach with SNPs to scan all 19 autosomes, and found extensive epistasis affecting all of these traits. More importantly, we also discovered that the majority of these epistatic effects exhibited significant interactions with sex, diet, and/or presence of PyMT. Analysis of these interactions showed that many of them appeared to involve QTLs previously identified as affecting these traits, but whose single-locus effects were variously modified by two-locus epistatic effects of other QTLs depending on the sex, diet, or PyMT environment. It was concluded that this context-dependency of epistatic effects is an important component of the genetic architecture of complex traits such as those contributing to weight and obesity

    Using Gaussian Process Models for Near-Infrared Spectroscopy Data Interpolation

    Get PDF
    Gaussian Process (GP) model interpolation is used extensively in geostatistics. We investigated the effectiveness of using GP model interpolation to generate maps of cortical activity as measured by Near Infrared Spectroscopy (NIRS). GP model interpolation also produces a variability map, which indicates the reliability of the interpolated data. For NIRS, cortical hemodynamic activity is spatially sampled. When generating cortical activity maps, the data must be interpolated. Popular NIRS imaging software HomER uses Photon Migration Imaging (PMI) and Diffuse Optical Imaging (DOI) techniques based on models of light behaviour to generate activity maps. Very few non-parametric methods of NIRS imaging exist and none of them indicate the reliability of the interpolated data. Our GP model interpolation algorithm and HomER produced activity maps based on data generated from typical functional NIRS responses. Image results in HomER were taken as the bench mark as the images produced are commonly considered to be representative of the true underlying hemodynamic spatial response. The output from the GP approach was then compared to these on a qualitative basis. The GP model interpolation appears to produce less structured image maps of hemodynamic activity compared to those produced by HomER, however a broadly similar spatial response is compelling evidence of the utility of GP models for such applications. The additional generation of a variability map which is produced by the GP method may have some utility for functional NIRS as such information is not explicitly available from standard approaches. GP model interpolation can produce spatial activity maps from coarsely sampled NIRS data sets without any knowledge of the system being modelled. While the images produced do not appear to have the same feature resolution as photonic model-based methods the technique is worthy of further investigation due to its relative simplicity and, most intriguingly, its generation of ancillary information in the form of the variability map. This additional data may have some utility in NIRS optode design or perhaps it may have application as additional input for response classification purposes. This GP technique may also be of use where model information is inadequate for DOI techniques

    Functional Near Infrared Spectroscopy (fNIRS) synthetic data generation

    Get PDF
    Accurately modelled computer-generated data can be used in place of real-world signals for the design, test and validation of signal processing techniques in situations where real data is difficult to obtain. Bio-signal processing researchers interested in working with fNIRS data are restricted due to the lack of freely available fNIRS data and by the prohibitively expensive cost of fNIRS systems. We present a simplified mathematical description and associated MATLAB implementation of model-based synthetic fNIRS data which could be used by researchers to develop fNIRS signal processing techniques. The software, which is freely available, allows users to generate fNIRS data with control over a wide range of parameters and allows for fine-tuning of the synthetic data. We demonstrate how the model can be used to generate raw fNIRS data similar to recorded fNIRS signals. Signal processing steps were then applied to both the real and synthetic data. Visual comparisons between the temporal and spectral properties of the real and synthetic data show similarity. This paper demonstrates that our model for generating synthetic fNIRS data can replicate real fNIRS recordings

    Combining fNIRS and EEG to improve motor cortex activity classification during an imagined movement-based task

    Get PDF
    This work serves as an initial investigation into improvements to classification accuracy of an imagined movement-based Brain Computer Interface (BCI) by combining the feature spaces of two unique measurement modalities: functional near infrared spectroscopy (fNIRS) and electroencephalography (EEG). Our dual-modality system recorded concurrent and co-locational hemodynamic and electrical responses in the motor cortex during an imagined movement task, participated in by two subjects. Offline analysis and classification of fNIRS and EEG data was performed using leave-one-out cross-validation (LOOCV) and linear discriminant analysis (LDA). Classification of 2-dimensional fNIRS and EEG feature spaces was performed separately and then their feature spaces were combined for further classification. Results of our investigation indicate that by combining feature spaces, modest gains in classification accuracy of an imagined movement-based BCI can be achieved by employing a supplemental measurement modality. It is felt that this technique may be particularly useful in the design of BCI devices for the augmentation of rehabilitation therapy
    corecore