411 research outputs found

    Natural transformation of the filamentous cyanobacterium Phormidium lacuna

    Get PDF
    Research for biotechnological applications of cyanobacteria focuses on synthetic pathways and bioreactor design, while little effort is devoted to introduce new, promising organisms in the field. Applications are most often based on recombinant work, and the establishment of transformation can be a risky, time-consuming procedure. In this work we demonstrate the natural transformation of the filamentous cyanobacterium Phormidium lacuna and insertion of a selection marker into the genome by homologous recombination. This is the first example for natural transformation filamentous non-heterocystous cyanobacterium. We found that Phormidium lacuna is polyploid, each cell has about 20–90 chromosomes. Transformed filaments were resistant against up to 14 mg/ml of kanamycin. Formerly, natural transformation in cyanobacteria has been considered a rare and exclusive feature of a few unicellular species. Our finding suggests that natural competence is more distributed among cyanobacteria than previously thought. This is supported by bioinformatic analyses which show that all protein factors for natural transformation are present in the majority of the analyzed cyanobacteria

    Contact angles mediate equilibrium fractionation between soil water and water vapor

    Get PDF
    Soil water potential is a function of grain size, adhesion and cohesion energy. The mechanical equilibrium between the interfacial free energies between water-gas, water-solid and solid-gas, leads to a particular contact angle at the three phase boundary water-solid-gas. The contact angle of the solid-soil affects the water retention in soils. Contact angles >0 lead to a shift of the water retention curve to simulating a coarser soil texture. Thus, a certain amount of water is stronger bound in a soil with a low contact angle compared to the same soil with a high contact angle. The relationship between the contact angle and the fractionation of water stable isotopes between soil water and water vapor has yet not been studied. We present a simple laboratory experiment with soil samples ranging from sand to silt to clay. Two subsamples were hydrophobized (or treated with) using dichlorodimethylsilane to produce different contact angles. Subsamples were transferred into Ziploc bags spiked with water of known isotopic composition and the headspace filled with dry air. After equilibration (at least 24h) the headspace was measured for its isotopic signature with a Laserspectrometer. Soil water potential was measured with a soil water potential meter and the contact angle determined with the Wilhelmy-plate-method (WPM). The working hypothesis is that the equilibrium between water and water vapor depends on the matric potential. Having the same pore and the same water content water repellency affects the soil water potential. Therefore the hydrophobized soil will change the equilibrium fractionation between water and water vapor. Hence, the contact angle between adsorbed water and water vapor is related to isotope effects

    eXtended Color Cell Compression -- A Runtime-efficient Compression Scheme for Software Video

    Get PDF
    Multimedia applications require a compression and decompression scheme for digital video. The standardized and widely used techniques JPEG and MPEG provide very good compression ratios, but are computationally quite complex and demanding. We propose to use an extension to the much simpler Color Cell Compression scheme as an alternative. Our extension includes the use of variable block sizes, the reuse of color index values from previously encoded blocks, and Huffman encoding of the stream of blocks. We present experimental results showing that our scheme provides much better runtime performance than MPEG, at the cost of a slightly inferior compression ratio. It is thus especially suited for software videos in high-speed networks

    Macchine da pressofusione Vacural Müller Weingarten

    Get PDF
    In questo articolo viene presentata una panoramica della macchina da pressocolata tipo “Vacural”prodotta dall’azienda tedesca Müller Weingarten. Questo tipo di impianto è stato inventato per produrregetti di pressocolati con alto vuoto: con questa tecnologia vengono eliminate le porosità all’interno deigetti. Le macchine da presso colata Vacural sono in uso in molte aziende che lavorano in particolare nelsettore dell’automotive. Una delle più importanti applicazioni degli impianti Vacural è nello stampaggiodello “space frame” di alcune autovetture

    Key Amino Acids in the Bacterial (6-4) Photolyase PhrB from Agrobacterium fabrum

    Get PDF
    Photolyases can repair pyrimidine dimers on the DNA that are formed during UV irradiation. PhrB from Agrobacterium fabrum represents a new group of prokaryotic (6–4) photolyases which contain an iron-sulfur cluster and a DMRL chromophore. We performed site-directed mutagenesis in order to assess the role of particular amino acid residues in photorepair and photoreduction, during which the FAD chromophore converts from the oxidized to the enzymatically active, reduced form. Our study showed that Trp342 and Trp390 serve as electron transmitters. In the H366A mutant repair activity was lost, which points to a significant role of His366 in the protonation of the lesion, as discussed for the homolog in eukaryotic (6–4) photolyases. Mutants on cysteines that coordinate the Fe-S cluster of PhrB were either insoluble or not expressed. The same result was found for proteins with a truncated C-terminus, in which one of the Fe-S binding cysteines was mutated and for expression in minimal medium with limited Fe concentrations. We therefore assume that the Fe-S cluster is required for protein stability. We further mutated conserved tyrosines that are located between the DNA lesion and the Fe-S cluster. Mutagenesis results showed that Tyr424 was essential for lesion binding and repair, and Tyr430 was required for efficient repair. The results point to an important function of highly conserved tyrosines in prokaryotic (6–4) photolyase

    The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna

    Get PDF
    Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response

    Three-nucleon mechanisms in photoreactions

    Full text link
    The 12^{12}C(γ,ppn)(\gamma,ppn) reaction has been measured for Eγ_{\gamma}=150-800 MeV in the first study of this reaction in a target heavier than 3^3He. The experimental data are compared to a microscopic many body calculation. The model, which predicts that the largest contribution to the reaction arises from final state interactions following an initial pion production process, overestimates the measured cross sections and there are strong indications that the overestimate arises in this two-step process. The selection of suitable kinematic conditions strongly suppresses this two-step contribution leaving cross sections in which up to half the yield is predicted to arise from the absorption of the photon on three interacting nucleons and which agree with the model. The results indicate (γ,3N)(\gamma,3N) measurements on nuclei may be a valuable tool for obtaining information on the nuclear three-body interaction.Comment: 5 pages, 3 figure

    A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster

    Get PDF
    Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster

    A Model of User Preferences for Semantic Services Discovery and Ranking

    Get PDF
    Current proposals on Semantic Web Services discovery and ranking are based on user preferences descriptions that often come with insufficient expressiveness, consequently making more difficult or even preventing the description of complex user desires. There is a lack of a general and comprehensive preference model, so discovery and ranking proposals have to provide ad hoc preference descriptions whose expressiveness depends on the facilities provided by the corresponding technique, resulting in user preferences that are tightly coupled with the underlying formalism being used by each concrete solution. In order to overcome these problems, in this paper an abstract and sufficiently expressive model for defining preferences is presented, so that they may be described in an intuitively and user-friendly manner. The proposed model is based on a well-known query preference model from database systems, which provides highly expressive constructors to describe and compose user preferences semantically. Furthermore, the presented proposal is independent from the concrete discovery and ranking engines selected, and may be used to extend current Semantic Web Service frameworks, such as wsmo, sawsdl, or owl-s. In this paper, the presented model is also validated against a complex discovery and ranking scenario, and a concrete implementation of the model in wsmo is outlined.Comisión Interministerial de Ciencia y Tecnología TIN2006-00472Comisión Interministerial de Ciencia y Tecnología TIN2009-07366Junta de Andalucía TIC-253
    corecore