340 research outputs found

    Magnetic Field Induced Charge Instabilities in Weakly Coupled Superlattices

    Full text link
    Using a time dependent selfconsistent model for vertical sequential tunneling,we study the appearance of charge instabilities that lead to the formation of electric field domains in a weakly coupled doped superlattice in the presence of high magnetic fields parallel to the transport direction. The interplay between the high non linearity of the system --coming from the Coulomb interaction-- and the inter-Landau-level scattering at the domain walls (regions of charge accumulation inside the superlattice) gives rise to new unstable negative differential conductance regions and extra stable branches in the sawtooth-like I-V curves.Comment: 5 pages, 4 postscript figure

    Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors.

    Get PDF
    BackgroundThe vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography.ResultsUnder normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day-night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment.ConclusionsThese data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease

    Hypoxia causes increased monocyte nitric oxide synthesis which is mediated by changes in Dimethylarginine Dimethylaminohydrolase 2 expression in animal and human models of normobaric hypoxia

    Get PDF
    Tissue hypoxia is a cardinal feature of inflammatory diseases and modulates monocyte function. Nitric oxide is a crucial component of the immune cell response. This study explored the metabolism of the endogenous inhibitor of nitric oxide production asymmetric dimethylarginine(ADMA) by monocyte dimethylarginine dimethylaminohydrolase 2(DDAH2), and the role of this pathway in the regulation of the cellular response and the local environment during hypoxia.Peritoneal macrophages were isolated from a macrophage-specific DDAH2 knockout mouse that we developed and compared with appropriate controls. Cells were exposed to 3% oxygen followed by reoxygenation at 21%. Healthy volunteers underwent an 8 h exposure to normobaric hypoxia with an inspired oxygen percentage of 12%. Peripheral blood mononuclear cells were isolated from blood samples taken before and at the end of this exposure.Intracellular nitrate plus nitrite(NOx) concentration was higher in wild-type murine monocytes after hypoxia and reoxygenation than in normoxia-treated cells (mean(SD) 13·2(2·4) vs 8·1(1·7) pmols/mg protein, p = 0·009). DDAH2 protein was 4·5-fold (SD 1·3) higher than in control cells (p = 0·03). This increase led to a 24% reduction in ADMA concentration, 0·33(0.04) pmols/mg to 0·24(0·03), p = 0·002). DDAH2-deficient murine monocytes demonstrated no increase in nitric oxide production after hypoxic challenge. These findings were recapitulated in a human observational study. Mean plasma NOx concentration was elevated after hypoxic exposure (3·6(1.8)μM vs 6·4(3·2), p = 0·01), which was associated with a reduction in intracellular ADMA in paired samples from 3·6(0.27) pmols/mg protein to 3·15(0·3) (p < 0·01). This finding was associated with a 1·9-fold(0·6) increase in DDAH2 expression over baseline(p = 0·03).This study shows that in both human and murine models of acute hypoxia, increased DDAH2 expression mediates a reduction in intracellular ADMA concentration which in turn leads to elevated nitric oxide concentrations both within the cell and in the local environment. Cells deficient in DDAH2 were unable to mount this response

    Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain.

    Get PDF
    BACKGROUND: Chlamydia trachomatis is the most common cause of sexually transmitted infections globally and the leading cause of preventable blindness in the developing world. There are two biovariants of C. trachomatis: 'trachoma', causing ocular and genital tract infections, and the invasive 'lymphogranuloma venereum' strains. Recently, a new variant of the genital tract C. trachomatis emerged in Sweden. This variant escaped routine diagnostic tests because it carries a plasmid with a deletion. Failure to detect this strain has meant it has spread rapidly across the country provoking a worldwide alert. In addition to being a key diagnostic target, the plasmid has been linked to chlamydial virulence. Analysis of chlamydial plasmids and their cognate chromosomes was undertaken to provide insights into the evolutionary relationship between chromosome and plasmid. This is essential knowledge if the plasmid is to be continued to be relied on as a key diagnostic marker, and for an understanding of the evolution of Chlamydia trachomatis. RESULTS: The genomes of two new C. trachomatis strains were sequenced, together with plasmids from six C. trachomatis isolates, including the new variant strain from Sweden. The plasmid from the new Swedish variant has a 377 bp deletion in the first predicted coding sequence, abolishing the site used for PCR detection, resulting in negative diagnosis. In addition, the variant plasmid has a 44 bp duplication downstream of the deletion. The region containing the second predicted coding sequence is the most highly conserved region of the plasmids investigated. Phylogenetic analysis of the plasmids and chromosomes are fully congruent. Moreover this analysis also shows that ocular and genital strains diverged from a common C. trachomatis progenitor. CONCLUSION: The evolutionary pathways of the chlamydial genome and plasmid imply that inheritance of the plasmid is tightly linked with its cognate chromosome. These data suggest that the plasmid is not a highly mobile genetic element and does not transfer readily between isolates. Comparative analysis of the plasmid sequences has revealed the most conserved regions that should be used to design future plasmid based nucleic acid amplification tests, to avoid diagnostic failures

    An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets.

    Get PDF
    Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3 &lt;sup&gt;+&lt;/sup&gt; regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets

    Diversity of Murine Norovirus Strains Isolated from Asymptomatic Mice of Different Genetic Backgrounds within a Single U.S. Research Institute

    Get PDF
    Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2−/−) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance

    Turbot reovirus (SMReV) genome encoding a FAST protein with a non-AUG start site

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A virus was isolated from diseased turbot <it>Scophthalmus maximus </it>in China. Biophysical and biochemical assays, electron microscopy, and genome electrophoresis revealed that the virus belonged to the genus <it>Aquareovirus</it>, and was named <it>Scophthalmus maximus </it>reovirus (SMReV). To the best of our knowledge, no complete sequence of an aquareovirus from marine fish has been determined. Therefore, the complete characterization and analysis of the genome of this novel aquareovirus will facilitate further understanding of the taxonomic distribution of aquareovirus species and the molecular mechanism of its pathogenesis.</p> <p>Results</p> <p>The full-length genome sequences of SMReV were determined. It comprises eleven dsRNA segments covering 24,042 base pairs and has the largest S4 genome segment in the sequenced aquareoviruses. Sequence analysis showed that all of the segments contained six conserved nucleotides at the 5' end and five conserved nucleotides at the 3' end (5'-GUUUUA ---- UCAUC-3'). The encoded amino acid sequences share the highest sequence identities with the respective proteins of aquareoviruses in species group <it>Aquareovirus </it>A. Phylogenetic analysis based on the major outer capsid protein VP7 and RNA-dependent RNA polymerase were performed. Members in <it>Aquareovirus </it>were clustered in two groups, one from fresh water fish and the other from marine fish. Furthermore, a fusion associated small transmembrane (FAST) protein NS22, which is translated from a non-AUG start site, was identified in the S7 segment.</p> <p>Conclusions</p> <p>This study has provided the complete genome sequence of a novel isolated aquareovirus from marine fish. Amino acids comparison and phylogenetic analysis suggested that SMReV was a new aquareovirus in the species group <it>Aquareovirus </it>A. Phylogenetic analysis among aquareoviruses revealed that VP7 could be used as a reference to divide the aquareovirus from hosts in fresh water or marine. In addition, a FAST protein with a non-AUG start site was identified, which partially contributed to the cytopathic effect caused by the virus infection. These results provide new insights into the virus-host and virus-environment interactions.</p

    Development of a transformation system for chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector

    Get PDF
    Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of ?-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active ?-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by complementatio
    corecore