12,003 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Parametric study of cavity length and mirror reflectivity in ultralow threshold quantum well InGaAs/AlGaAs lasers

    Get PDF
    Record low CW threshold currents of 16 μA at-room temperature and 21 μA at cryogenic temperature have been demonstrated in buried heterostructure strained layer, single quantum well InGaAs/AlGaAs lasers with a short cavity length and high reflectivity coatings

    Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers

    Get PDF
    A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser

    First principles calculation of ac conductance for Al-BDT-Al and Al-Cn-Al systems

    Get PDF
    We perform first-principles calculation to investigate the dynamic conductance of atomic wires of the benzenedithiol (BDT) as well as carbon chains with different length in contact with two Al(100) electrodes (Al-Cn-Al). Our calculation is based on the combination of the non-equilibrium Green's function and the density functional theory. For ac conductance, there are two theories that ensures the current conservation: (1). the global formula which is a phenomenological theory that partitions the total displacement current into each leads so that the current is conserved.(2). the local formula which is a microscopic theory that includes Coulomb interaction explicitly so that the current is conserved automatically. In this work, we use the local formula to calculate the dynamic conductance, especially the emittance. We give a detailed comparison and analysis for the results obtained from two theories. Our numerical results show that the global formula overestimates the emittance by two orders of magnitude. We also obtain an inequality showing that the emittance from global formula is greater than that from local formula for real atomic structures. For Al-Cn-Al structures, the oscillatory behavior as the number of carbon chain N varies from even to odd remains unchanged when local formula is used. However, the prediction of local formula gives rise to opposite response when N is odd (inductive-like) as compared with that of global formula. Therefore, one should use the local formula for an accurate description of ac transport in nanoscale structures. In addition, the ‘size effect’ of the ac emittance is analyzed and can be understood by the kinetic inductance. Since numerical calculation using the global formula can be performed in orbital space while the local formula can only be used in real space, our numerical results indicate that the calculation using the local formula is extremely computational demanding.published_or_final_versio

    Phase Diagram of Cold Polarized Fermi Gas in Two Dimensions

    Full text link
    The superfluid phase diagrams of a two-dimensional cold polarized Fermi gas in the BCS-BEC crossover are systematically and analytically investigated. In the BCS-Leggett mean field theory, the transition from unpolarized superfluid phase to normal phase is always of first order. For a homogeneous system, the two critical Zeeman fields and the critical population imbalance are analytically determined in the whole coupling parameter region, and the superfluid-normal mixed phase is shown to be the ground state between the two critical fields. The density profile in the presence of a harmonic trap calculated in the local density approximation exhibits a shell structure, a superfluid core at the center and a normal shell outside. For weak interaction, the normal shell contains a partially polarized cloud with constant density difference surrounded by a fully polarized state. For strong interaction, the normal shell is totally in fully polarized state with a density profile depending only on the global population imbalance. The di-fermion bound states can survive in the whole highly imbalanced normal phase.Comment: V3: extended version according to referee's comment. 12 pages, 6 figures. Analytical results of density profile in trapped system are reported; V4: Version accepted by Physical Review

    The 7-channel FIR HCN Interferometer on J-TEXT Tokamak

    Full text link
    A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has been established aiming to provide the line integrated plasma density for the J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser designed with a cavity length 3.4 m is used as the laser source with a wavelength of 337 {\mu}m and an output power up to 100 mW. The system is configured as a Mach-Zehnder type interferometer. Phase modulation is achieved by a rotating grating, with a modulation frequency of 10 kHz which corresponds to the temporal resolution of 0.1 ms. The beat signal is detected by TGS detector. The phase shift induced by the plasma is derived by the comparator with a phase sensitivity of 0.06 fringe. The experimental results measured by the J-TEXT interferometer are presented in details. In addition, the inversed electron density profile done by a conventional approach is also given. The kinematic viscosity of dimethyl silicone and vibration control is key issues for the system performance. The laser power stability under different kinematic viscosity of silicone oil is presented. A visible improvement of measured result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma Diagnostics
    • …
    corecore