11,162 research outputs found
Optical Turbulence Measurements and Models for Mount John University Observatory
Site measurements were collected at Mount John University Observatory in 2005
and 2007 using a purpose-built scintillation detection and ranging system.
profiling indicates a weak layer located at 12 - 14 km above sea
level and strong low altitude turbulence extending up to 5 km. During calm
weather conditions, an additional layer was detected at 6 - 8 km above sea
level. profiling suggests that tropopause layer velocities are nominally
12 - 30 m/s, and near-ground velocities range between 2 -- 20 m/s, dependent on
weather. Little seasonal variation was detected in either and
profiles. The average coherence length, , was found to be cm for
the full profile at a wavelength of 589 nm. The average isoplanatic angle,
, was arcsec. The mean turbulence altitude,
, was found to be km above sea level. No average in the
Greenwood frequency, , could be established due to the gaps present in the
\vw\s profiles obtained. A modified Hufnagel-Valley model was developed to
describe the profiles at Mount John, which estimates at 6 cm
and at 0.9 arcsec. A series of models were developed, based
on the Greenwood wind model with an additional peak located at low altitudes.
Using the model and the suggested model for moderate ground
wind speeds, is estimated at 79 Hz.Comment: 14 pages; accepted for publication in PAS
Testing coupled dark energy with next-generation large-scale observations
Coupling dark energy to dark matter provides one of the simplest way to
effectively modify gravity at large scales without strong constraints from
local (i.e. solar system) observations. Models of coupled dark energy have been
studied several times in the past and are already significantly constrained by
cosmic microwave background experiments. In this paper we estimate the
constraints that future large-scale observations will be able to put on the
coupling and in general on all the parameters of the model. We combine cosmic
microwave background, tomographic weak lensing, redshift distortions and power
spectrum probes. We show that next-generation observations can improve the
current constraint on the coupling to dark matter by two orders of magnitude;
this constraint is complementary to the current solar-system bounds on a
coupling to baryons.Comment: 18 pages, 12 figs, 8 table
QED self-energy contribution to highly-excited atomic states
We present numerical values for the self-energy shifts predicted by QED
(Quantum Electrodynamics) for hydrogenlike ions (nuclear charge ) with an electron in an , 4 or 5 level with high angular momentum
(). Applications include predictions of precision transition
energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure
Lamb Shift of 3P and 4P states and the determination of
The fine structure interval of P states in hydrogenlike systems can be
determined theoretically with high precision, because the energy levels of P
states are only slightly influenced by the structure of the nucleus. Therefore
a measurement of the fine structure may serve as an excellent test of QED in
bound systems or alternatively as a means of determining the fine structure
constant with very high precision. In this paper an improved analytic
calculation of higher-order binding corrections to the one-loop self energy of
3P and 4P states in hydrogen-like systems with low nuclear charge number is
presented. A comparison of the analytic results to the extrapolated numerical
data for high ions serves as an independent test of the analytic
evaluation. New theoretical values for the Lamb shift of the P states and for
the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure
Imaging the Sunyaev-Zel'dovich Effect
We report on results of interferometric imaging of the Sunyaev-Zel'dovich
Effect (SZE) with the OVRO and BIMA mm-arrays. Using low-noise cm-wave
receivers on the arrays, we have obtained high quality images for 27 distant
galaxy clusters. We review the use of the SZE as a cosmological tool. Gas mass
fractions derived from the SZE data are given for 18 of the clusters, as well
as the implied constraint on the matter density of the universe, . We
find . A best guess for the matter
density obtained by assuming a reasonable value for the Hubble constant and
also by attempting to account for the baryons contained in the galaxies as well
as those lost during the cluster formation process gives .
We also give preliminary results for the Hubble constant. Lastly, the power for
investigating the high redshift universe with a non-targeted high sensitivity
SZE survey is discussed and an interferometric survey is proposed.Comment: 14 pages, 7 figures, latex, contribution to Nobel Symposium "Particle
Physics and the Universe" to appear in Physica Scripta and World Scientific,
eds L. Bergstrom, P. Carlson and C. Fransso
Lessons from Leaders: Mainstreaming corporate valuations of impacts and dependencies on nature
Historically, business practices have negatively affected the natural environment. Many environmental problems originated from businesses’ view of nature as a source of cheap inputs. Moreover, businesses haven’t accounted for negative environmental impacts on “natural capital” (e.g. water, forests, pollination, etc.) from manufacturing, pollution, toxic waste, shipping, and transportation. Given that “you can’t manage what you don’t measure,” various organizations are developing models and metrics to quantify business impacts on natural capital, and leading businesses are forging ahead with financial valuations. For example, the Kering Group displays their natural capital valuations through an interactive “Environmental Profit and Loss” calculator, displaying global environmental impacts in Euros. Despite the compelling logic of accounting for impacts on nature, few businesses do so. Our research conducted through in-depth interviews with businesses, NGOs, consultants, and others highlights the array of motives behind these companies’ efforts, as well as the challenges they have overcome. In addition, our research demonstrates that valuations of natural capital affect decision making in powerful and unexpected ways
A Sunyaev-Zel'dovich Effect Survey for High Redshift Clusters
Interferometric observations of the Sunyaev-Zel'dovich Effect (SZE) toward
clusters of galaxies provide sensitive cosmological probes. We present results
from 1 cm observations (at BIMA and OVRO) of a large, intermediate redshift
cluster sample. In addition, we describe a proposed, higher sensitivity array
which will enable us to survey large portions of the sky. Simulated
observations indicate that we will be able to survey one square degree of sky
per month to sufficient depth that we will detect all galaxy clusters more
massive than 2x10^{14} h^{-1}_{50}M_\odot, regardless of their redshift. We
describe the cluster yield and resulting cosmological constraints from such a
survey.Comment: 7 pages, 6 figures, latex, contribution to VLT Opening Symposiu
The X-ray Size-Temperature Relation for Intermediate Redshift Galaxy Clusters
We present the first measurements of the X-ray size-temperature (ST) relation
in intermediate redshift (z~0.30) galaxy clusters. We interpret the local ST
relation (z~0.06) in terms of underlying scaling relations in the cluster dark
matter properties, and then we use standard models for the redshift evolution
of those dark matter properties to show that the ST relation does not evolve
with redshift. We then use ROSAT HRI observations of 11 clusters to examine the
intermediate redshift ST relation; for currently favored cosmological
parameters, the intermediate redshift ST relation is consistent with that of
local clusters. Finally, we use the ST relation and our evolution model to
measure angular diameter distances; with these 11 distances we evaluate
constraints on Omega_M and Omega_L which are consistent with those derived from
studies of Type Ia supernovae. The data rule out a model with Omega_M=1 and
Omega_L=0 with 2.5 sigma confidence. When limited to models where
Omega_M+Omega_L=1, these data are inconsistent with Omega_M=1 with 3 sigma
confidence.Comment: ApJ: submitted April 7, accepted June 28, to appear Dec 1 (vol 544
First-principles calculations of the vibrational properties of bulk CdSe and CdSe nanowires
We present first-principles calculations on bulk CdSe and CdSe nanowires with
diameters of up to 22 \AA. Density functional linear combination of atomic
orbitals and plane wave calculations of the electronic and structural
properties are presented and discussed. We use an iterative, symmetry-based
method to relax the structures into the ground state. We find that the band gap
depends on surface termination. Vibrational properties in the whole Brillouin
zone of bulk CdSe and the zone-center vibrations of nanowires are calculated
and analyzed. We find strongly size-dependent and nearly constant modes,
depending on the displacement directions. A comparison with available
experimental Raman data is be given
- …