71,879 research outputs found

    CP violation in J/ψ→ΛΛˉJ/\psi \rightarrow \Lambda \bar \Lambda

    Full text link
    We study CP violation in J/ψ→ΛΛˉJ/\psi \rightarrow \Lambda \bar{\Lambda} decay. This decay provides a good place to look for CP violation. Some observables are very sensitive to the Λ\Lambda electric dipole moment dΛd_\Lambda and therefore can be used to improve the experimental upper bound on dΛd_\Lambda. CP violations in the lepton pair decays of J/ψJ/\psi and Υ\Upsilon are also discussed.Comment: 8 pages, RevTex, UM-P-92/113, OZ-92/3

    Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas

    Full text link
    Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin polarization and spin orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates the system with dominating structure inversion asymmetry.Comment: 13 pages, 4 figure

    Semantically Guided Depth Upsampling

    Full text link
    We present a novel method for accurate and efficient up- sampling of sparse depth data, guided by high-resolution imagery. Our approach goes beyond the use of intensity cues only and additionally exploits object boundary cues through structured edge detection and semantic scene labeling for guidance. Both cues are combined within a geodesic distance measure that allows for boundary-preserving depth in- terpolation while utilizing local context. We model the observed scene structure by locally planar elements and formulate the upsampling task as a global energy minimization problem. Our method determines glob- ally consistent solutions and preserves fine details and sharp depth bound- aries. In our experiments on several public datasets at different levels of application, we demonstrate superior performance of our approach over the state-of-the-art, even for very sparse measurements.Comment: German Conference on Pattern Recognition 2016 (Oral

    ARPES and NMTO Wannier Orbital Theory of LiMo6_{6}O17_{17} - Implications for Unusually Robust Quasi-One Dimensional Behavior

    Full text link
    We present the results of a combined study by band theory and angle resolved photoemission spectroscopy (ARPES) of the purple bronze, Li1−x_{1-x}Mo6_{6}O17_{17}. Structural and electronic origins of its unusually robust quasi-one dimensional (quasi-1D) behavior are investigated in detail. The band structure, in a large energy window around the Fermi energy, is basically 2D and formed by three Mo t2gt_{2g}-like extended Wannier orbitals, each one giving rise to a 1D band running at a 120∘^\circ angle to the two others. A structural "dimerization" from c/2\mathbf{c}/2 to c\mathbf{c} gaps the xzxz and yzyz bands while leaving the xyxy bands metallic in the gap, but resonantly coupled to the gap edges and, hence, to the other directions. The resulting complex shape of the quasi-1D Fermi surface (FS), verified by our ARPES, thus depends strongly on the Fermi energy position in the gap, implying a great sensitivity to Li stoichiometry of properties dependent on the FS, such as FS nesting or superconductivity. The strong resonances prevent either a two-band tight-binding model or a related real-space ladder picture from giving a valid description of the low-energy electronic structure. We use our extended knowledge of the electronic structure to newly advocate for framing LiMo6_{6}O17_{17} as a weak-coupling material and in that framework can rationalize both the robustness of its quasi-1D behavior and the rather large value of its Luttinger liquid (LL) exponent α\alpha. Down to a temperature of 6 \,K we find no evidence for a theoretically expected downward renormalization of perpendicular single particle hopping due to LL fluctuations in the quasi-1D chains.Comment: 53 pages, 17 Figures, 6 year

    Free Expansion of a Weakly-interacting Dipolar Fermi Gas

    Full text link
    We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expansion for the high-temperature Maxwell-Boltzmann and zero-temperature Thomas-Fermi gases in the Hartree-Fock and Landau-Vlasov approaches. In conclusion, we provide a proper approach to develop the time-of-flight method for the weakly-interacting dipolar Fermi gas and also reveal a scaling law associated with the Liouville's theorem in the long-time behaviors of the both gases
    • …
    corecore