47,294 research outputs found

    Two-dimensional gases of generalized statistics in a uniform magnetic field

    Full text link
    We study the low temperature properties of two-dimensional ideal gases of generalized statistics in a uniform magnetic field. The generalized statistics considered here are the parafermion statistics and the exclusion statistics. Similarity in the behaviours of the parafermion gas of finite order pp and the gas with exclusion coefficient g=1/pg=1/p at very low temperatures is noted. These two systems become exactly equivalent at T=0T=0. Qumtum Hall effect with these particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501

    Get PDF
    The recently discovered correlation between black hole mass and stellar velocity dispersion provides a new method to determine the masses of black holes in active galaxies. We have obtained optical spectra of Markarian 501, a nearby gamma-ray blazar with emission extending to TeV energies. The stellar velocity dispersion of the host galaxy, measured from the calcium triplet lines in a 2"x3.7" aperture, is 372 +/- 18 km/s. If Mrk 501 follows the M-sigma correlation defined for local galaxies, then its central black hole has a mass of (0.9-3.4)x10^9 solar masses. This is significantly larger than some previous estimates for the central mass in Mrk 501 that have been based on models for its nonthermal emission. The host galaxy luminosity implies a black hole of 6x10^8 solar masses, but this is not in severe conflict with the mass derived from the M-sigma relation because the M_BH-L_bulge correlation has a large intrinsic scatter. Using the emission-line luminosity to estimate the bolometric luminosity of the central engine, we find that Mrk 501 radiates at an extremely sub-Eddington level of L/L_Edd ~ 10^-4. Further applications of the M-sigma relation to radio-loud active galactic nuclei may be useful for interpreting unified models and understanding the relationship between radio galaxies and BL Lac objects.Comment: To appear in ApJ Letters. 5 pages, 2 figure

    Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: Diverse Appearance of the Broad-line Region

    Full text link
    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR), from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ\beta line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ\beta and other broad emission lines (e.g., \feii), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.Comment: emulatapj style, 15 pages, 6 figures, in pres

    Boundary Condition of Polyelectrolyte Adsorption

    Full text link
    The modification of the boundary condition for polyelectrolyte adsorption on charged surface with short-ranged interaction is investigated under two regimes. For weakly charged Gaussian polymer in which the short-ranged attraction dominates, the boundary condition is the same as that of the neutral polymer adsorption. For highly charged polymer (compressed state) in which the electrostatic interaction dominates, the linear relationship (electrostatic boundary condition) between the surface monomer density and the surface charge density needs to be modified.Comment: 4 page

    In-plane Theory of Non-Sequential Triple Ionization

    Get PDF
    We describe first-principles in-plane calculations of non-sequential triple ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear attraction, the pairwise e-e repulsions and the laser force throughout the duration of a 780nm laser pulse. Nonsequential ejection is shown to occur in a multi-electron, possibly multi-cycle and multi-dimensional, rescattering sequence that is coordinated by a number of sharp transverse recollimation impacts.Comment: 4 pages, 4 figure

    Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    Full text link
    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 Solar masses. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically-thin synchrotron spectrum with a spectral index -0.76+/-0.05, is less than 11 percent linearly polarized, and is steady - although poorly sampled - on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 Solar masses per year, is inconsistent with the rate of less than 2 Solar masses per year derived from narrow Halpha and [OII] 3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those Seyferts, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black-hole growth.Comment: 7 pages; 2 figures; emulateapj; to appear in Ap

    The Maslov Gerbe

    Full text link
    Let Lag(E) be the grassmannian of lagrangian subspaces of a complex symplectic vector space E. We construct a Maslov class which generates the second integral cohomology of Lag(E), and we show that its mod 2 reduction is the characteristic class of a flat gerbe with structure group Z_2. We explain the relation of this gerbe to the well-known flat Maslov line bundle with structure group Z_4 over the real lagrangian grassmannian, whose characteristic class is the mod 4 reduction of the real Maslov class.Comment: 8 page

    Protein transduction: A novel tool for tissue regeneration

    Get PDF
    Tissue regeneration in humans is limited and excludes vitals organs like heart and brain. Transformation experiments with oncogenes like T antigen have shown that retrodifferentiation of the respective cells is possible but hard to control. To bypass the risk of cancer formation a protein therapy approach has been developed. The transient delivery of proteins rather than genes could still induce terminallydifferentiated cells to reenter the cell cycle. This approach takes advantage of proteintransducing domains that mediate the transfer of cargo proteins into cells. The goal of this brief review is to outline the basics of protein transduction and to discuss potential applications for tissue regeneration
    • …
    corecore