375 research outputs found
Spatially Controlled Membrane Depositions for Silicon-Based Sensors
The membrane deposition technology on silicon-based transducers constitutes the most delicate part of the miniaturized (bio)chemical sensor fabrication. Membrane adhesion to the transducer, reproducibility of the deposition process and its spatial control are the three most important parameters which determine the sensor performance and lifetime.The fabrication of two sensors is described: 1) a combined pO2, pCO2, pH sensor for which a polyacrylamide gel and a polysiloxane gas-permeable membrane were deposited and patterned at the on-wafer level and 2) a glucose amperometric enzyme electrode where the glucose oxidase was immobilized electrochemically either in a polypyrrole matrix or co-deposited with bovine serum albumin by electrochemically aided adsorption. The optimization of the deposition procedures allowed reproducible devices with reasonable lifetimes to be obtained
Modification des polymères conducteurs avec de petites particules métalliques; propriétés des films de polypyrrole et de polyaniline platines
The properties of two π-conjugated conducting polymers, polypyrrole, and polyaniline, modified with small amounts of Pt, have been investigated. Both polymers were prepared by electrochemical (cyclic voltammetric) polymerization in the form of thin films (less than 1 μm for polypyrrole, ca. 50-μm thick for polyaniline). It is shown that incorporation, via electrodeposition, of small amount of dispersed Pt particles, inside the polymer film, leads to radical change of its properties. Thus, the polypyrrole film electrode containing ca. 200 μg · cm-2 of Pt exhibits remarkably stable electrocatalytic activity towards anodic oxidation of an important fuel cell reactant – CH3OH. In contrast with the bulk Pt metal or the Pt dispersed on other supports, a polypyrrole/Pt composite does apparently not undergo poisoning, even in the course of prolonged oxidation runs. We show also that the incorporation of Pt microparticles, into several tens of μm thick polyniline films, results in a large enhancement of their redox switching rate between isolating and conducting states and vice versa
Monoclinic form of 1,2,4,5-tetracyclohexylbenzene
The molecule of the title compound, C30H46, has a crystallographically imposed inversion center and the cyclohexyl groups are oriented with their methine H atoms pointing towards one another (H⋯H = 1.99 Å). The cyclohexyl groups adopt chair conformations. A significant C—H⋯π interaction assembles molecules into layers parallel to (100)
The BRITE-Constellation Nanosatellite Space Mission And Its First Scientific Results
The BRIght Target Explorer (BRITE) Constellation is the first nanosatellite
mission applied to astrophysical research. Five satellites in low-Earth orbits
perform precise optical two-colour photometry of the brightest stars in the
night sky. BRITE is naturally well suited for variability studies of hot stars.
This contribution describes the basic outline of the mission and some initial
problems that needed to be overcome. Some information on BRITE data products,
how to access them, and how to join their scientific exploration is provided.
Finally, a brief summary of the first scientific results obtained by BRITE is
given.Comment: 5 pages, 1 figure, to appear in the proceedings of "Seismology of the
Sun and the Distant Stars 2016. Using Today's Successes to Prepare the
Future. Joint TASC2/KASC9 Workshop - SPACEINN/HELAS8 Conference", ed. M. J.
P. F. G. Monteir
Massive pulsating stars observed by BRITE-Constellation. I. The triple system Beta Centauri (Agena)
This paper aims to precisely determine the masses and detect pulsation modes
in the two massive components of Beta Cen with BRITE-Constellation photometry.
In addition, seismic models for the components are considered and the effects
of fast rotation are discussed. This is done to test the limitations of seismic
modeling for this very difficult case. A simultaneous fit of visual and
spectroscopic orbits is used to self-consistently derive the orbital
parameters, and subsequently the masses, of the components. The derived masses
are equal to 12.02 +/- 0.13 and 10.58 +/- 0.18 M_Sun. The parameters of the
wider, A - B system, presently approaching periastron passage, are constrained.
Analysis of the combined blue- and red-filter BRITE-Constellation photometric
data of the system revealed the presence of 19 periodic terms, of which eight
are likely g modes, nine are p modes, and the remaining two are combination
terms. It cannot be excluded that one or two low-frequency terms are rotational
frequencies. It is possible that both components of Beta Cen are Beta Cep/SPB
hybrids. An attempt to use the apparent changes of frequency to distinguish
which modes originate in which component did not succeed, but there is
potential for using this method when more BRITE data become available. Agena
seems to be one of very few rapidly rotating massive objects with rich p- and
g-mode spectra, and precisely known masses. It can therefore be used to gain a
better understanding of the excitation of pulsations in relatively rapidly
rotating stars and their seismic modeling. Finally, this case illustrates the
potential of BRITE-Constellation data for the detection of rich-frequency
spectra of small-amplitude modes in massive pulsating stars.Comment: 17 pages (with Appendix), 15 figures, accepted for publication in A&
Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline
\ua9 The Author(s) 2022. Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease
Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment
Copyright \ua9 2022 Li, Kitamura, Beverley, Koudelka, Duncombe, Lennen, Jansen, Marshall, Platt, Wiegand, Carare, Kalaria, Iliff and Horsburgh. Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI
Oligodendrocyte Neurofascin independently regulates both myelin targeting and sheath growth in the CNS
Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo
- …