75 research outputs found

    Reproducibility of a Parkinsonism-Related Metabolic Brain Network in Non-Human Primates: A Descriptive Pilot Study With FDG PET

    Get PDF
    Background: We have previously defined a parkinsonism-related metabolic brain network in rhesus macaques using a high-resolution research positron emission tomography camera. This brief article reports a descriptive pilot study to assess the reproducibility of network activity and regional glucose metabolism in independent parkinsonian macaques using a clinical positron emission tomography/CT camera. Methods: [F-18]fluorodeoxyglucose PET scans were acquired longitudinally over 3 months in three drug-naive parkinsonian and three healthy control cynomolgus macaques. Group difference and test-retest stability in network activity and regional glucose metabolism were evaluated graphically, using all brain images from these macaques. Results: Comparing the parkinsonian macaques with the controls, network activity was elevated and remained stable over 3 months. Normalized glucose metabolism increased in putarnen/globus pallidus and sensorirnotor regions but decreased in posterior parietal cortices. Conclusions: Parkinsonism-related network activity can be reliably quantified in different macaques with a clinical positron emission tomography/CT scanner and is reproducible over a period typically employed in preclinical intervention studies. This measure can be a useful biomarker of disease process or drug effects in primate models of Parkinson\u27s disease. (C) 2015 International Parkinson and Movement Disorder Societ

    Progressive Neurodegeneration or Endogenous Compensation in an Animal Model of Parkinson's Disease Produced by Decreasing Doses of Alpha-Synuclein

    Get PDF
    The pathological hallmarks of Parkinson's disease (PD) are degeneration of dopamine (DA) neurons of the substantia nigra (SN) and the presence of alpha-synuclein (α-syn)-rich Lewy bodies in DA cells that remain. To model these aspects of the disease, we previously showed that high titer (5.1×10exp12 gp/ml) AAV1/2 driven expression of A53T α-syn in the SN of rats caused nigrostriatal pathology including a loss of DA neurons, but also with toxicity in the GFP control group. In the current study, we evaluate the effects of two lower titers by dilution of the vector (1∶3 [1.7×10exp12] and 1∶10 [5.1×10exp11]) to define a concentration that produced pathology specific for α-syn. In GFP and empty vector groups there were no behavioural or post-mortem changes at 3 or 6 weeks post-administration at either vector dose. Dilution of the AAV1/2 A53T α-syn (1∶3) produced significant paw use asymmetry, reductions in striatal tyrosine hydroxylase (TH), and increases in DA turnover at 3 weeks in the absence of overt pathology. By 6 weeks greater evidence of pathology was observed and included, reductions in SN DA neurons, striatal DA, TH and DA-transporter, along with a sustained behavioural deficit. In contrast, the 1∶10 AAV1/2 A53T α-syn treated animals showed normalization between 3 and 6 weeks in paw use asymmetry, reductions in striatal TH, and increased DA turnover. Progression of dopaminergic deficits using the 1∶3 titer of AAV1/2 A53Tα-syn provides a platform for evaluating treatments directed at preventing and/or reversing synucleinopathy. Use of the 1∶10 titer of AAV1/2 A53T α-syn provides an opportunity to study mechanisms of endogenous compensation. Furthermore, these data highlight the need to characterize the titer of vector being utilized, when using AAV to express pathogenic proteins and model disease process, to avoid producing non-specific effects

    Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses

    Get PDF

    Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression

    No full text
    In Parkinson's disease (PD), dopaminergic (DA) neurons in the substantia nigra (SN, A9) are particularly vulnerable, compared to adjacent DA neurons within the ventral tegmental area (VTA, A10). Here, we show that in rat and human, one RAB3 isoform, RAB3B, has higher expression levels in A10 compared to A9 neurons. RAB3 is a monomeric GTPase protein that is highly enriched in synaptic vesicles and is involved in synaptic vesicle trafficking and synaptic transmission, disturbances of which have been implicated in several neurodegenerative diseases, including PD. These findings prompted us to further investigate the biology and neuroprotective capacity of RAB3B both in vitro and in vivo. RAB3B overexpression in human dopaminergic BE (2)-M17 cells increased neurotransmitter content, [3H] dopamine uptake, and levels of presynaptic proteins. AAV-mediated RAB3B overexpression in A9 DA neurons of the rat SN increased striatal dopamine content, number and size of synaptic vesicles, and levels of the presynaptic proteins, confirming in vitro findings. Measurement of extracellular DOPAC, a dopamine metabolite, following l-DOPA injection supported a role for RAB3B in enhancing the dopamine storage capacity of synaptic terminals. RAB3B overexpression in BE (2)-M17 cells was protective against toxins that simulate aspects of PD in vitro, including an oxidative stressor 6-hydroxydopamine (6-OHDA) and a proteasome inhibitor MG-132. Furthermore, RAB3B overexpression in rat SN both protected A9 DA neurons and resulted in behavioral improvement in a 6-OHDA retrograde lesion model of PD. These results suggest that RAB3B improves dopamine handling and storage capacity at presynaptic terminals, and confers protection to vulnerable DA neurons

    Ectopic galanin expression and normal galanin receptor 2 and galanin receptor 3 mRNA levels in the forebrain of galanin transgenic mice

    No full text
    The functional interactions of the neuropeptide galanin (GAL) occur through its binding to three G protein-coupled receptor subtypes: galanin receptor (GALR) 1, GALR2 and GALR3. Previously, we demonstrated that GALR1 mRNA expression was increased in the CA1 region of the hippocampus and discrete hypothalamic nuclei in galanin transgenic (GAL-tg) mice. This observation suggested a compensatory adjustment in cognate receptors in the face of chronic GAL exposure. To evaluate the molecular alterations to GALR2 and GALR3 in the forebrain of GAL overexpressing mice, we performed complementary quantitative, real-time PCR (qPCR), in situ hybridization, and immunohistochemistry in select forebrain regions of GAL-tg mice to characterize the neuronal distribution and magnitude of GAL mRNA and peptide expression and the consequences of genetically manipulating the neuropeptide GAL on the expression of GALR2 and GALR3 receptors. We found that GAL-tg mice displayed dramatic increases in GAL mRNA and peptide in the frontal cortex, posterior cortex, hippocampus, septal diagonal band complex, amygdala, piriform cortex, and olfactory bulb. Moreover, there was evidence for ectopic neuronal GAL expression in forebrain limbic regions that mediate cognitive and affective behaviors, including the piriform and entorhinal cortex and amygdala. Interestingly, regional qPCR analysis failed to reveal any changes in GALR2 or GALR3 expression in the GAL-tg mice, suggesting that, contrary to GALR1, these receptor genes are not under ligand-mediated regulatory control. The GAL-tg mouse model may provide a useful tool for the investigation of GAL ligand-receptor relationships and their role in normal cognitive and affective functions as well as in the onset of neurological disease

    Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF

    No full text
    This study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment. GDNF ELISA of striatal brain samples confirmed increased GDNF expression in lenti-GDNF treated aged animals that correlated with functional improvements and preserved nigrostriatal dopaminergic markers. Our results indicate that the aged primate brain challenged by MPTP administration has the potential to respond to trophic factor delivery and that the degree of neuroprotection depends on GDNF levels
    • …
    corecore