696 research outputs found

    Kochen-Specker theorem as a precondition for secure quantum key distribution

    Full text link
    We show that (1) the violation of the Ekert 91 inequality is a sufficient condition for certification of the Kochen-Specker (KS) theorem, and (2) the violation of the Bennett-Brassard-Mermin 92 (BBM) inequality is, also, a sufficient condition for certification of the KS theorem. Therefore the success in each QKD protocol reveals the nonclassical feature of quantum theory, in the sense that the KS realism is violated. Further, it turned out that the Ekert inequality and the BBM inequality are depictured by distillable entanglement witness inequalities. Here, we connect the success in these two key distribution processes into the no-hidden-variables theorem and into witness on distillable entanglement. We also discuss the explicit difference between the KS realism and Bell's local realism in the Hilbert space formalism of quantum theory.Comment: 4 pages, To appear in Phys. Rev.

    Entropic Test of Quantum Contextuality

    Full text link
    We study the contextuality of a three-level quantum system using classical conditional entropy of measurement outcomes. First, we analytically construct the minimal configuration of measurements required to reveal contextuality. Next, an entropic contextual inequality is formulated, analogous to the entropic Bell inequalities derived by Braunstein and Caves in [Phys. Rev. Lett. {\bf 61}, 662 (1988)], that must be satisfied by all non-contextual theories. We find optimal measurements for violation of this inequality. The approach is easily extendable to higher dimensional quantum systems and more measurements. Our theoretical findings can be verified in the laboratory with current technology.Comment: 4 pages, 4 figure

    Comment on ``All quantum observables in a hidden-variable model must commute simultaneously"

    Full text link
    Malley discussed {[Phys. Rev. A {\bf 69}, 022118 (2004)]} that all quantum observables in a hidden-variable model for quantum events must commute simultaneously. In this comment, we discuss that Malley's theorem is indeed valid for the hidden-variable theoretical assumptions, which were introduced by Kochen and Specker. However, we give an example that the local hidden-variable (LHV) model for quantum events preserves noncommutativity of quantum observables. It turns out that Malley's theorem is not related with the LHV model for quantum events, in general.Comment: 3 page

    Negativity and contextuality are equivalent notions of nonclassicality

    Full text link
    Two notions of nonclassicality that have been investigated intensively are: (i) negativity, that is, the need to posit negative values when representing quantum states by quasiprobability distributions such as the Wigner representation, and (ii) contextuality, that is, the impossibility of a noncontextual hidden variable model of quantum theory (also known as the Bell-Kochen-Specker theorem). Although both of these notions were meant to characterize the conditions under which a classical explanation cannot be provided, we demonstrate that they prove inadequate to the task and we argue for a particular way of generalizing and revising them. With the refined version of each in hand, it becomes apparent that they are in fact one and the same. We also demonstrate the impossibility of noncontextuality or nonnegativity in quantum theory with a novel proof that is symmetric in its treatment of measurements and preparations.Comment: 5 pages, published version (modulo some supplementary material

    Reply to Comments of Bassi, Ghirardi, and Tumulka on the Free Will Theorem

    Get PDF
    We show that the authors in the title have erred in claiming that our axiom FIN is false by conflating it with Bell locality. We also argue that the predictions of quantum mechanics, and in particular EPR, are fully Lorentz invariant, whereas the Free Will Theorem shows that theories with a mechanism of reduction, such as GRW, cannot be made fully invariant.Comment: We sharpen our theorem by replacing axiom FIN by a weaker axiom MIN to answer the above authors' objection

    A Topos Foundation for Theories of Physics: II. Daseinisation and the Liberation of Quantum Theory

    Get PDF
    This paper is the second in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper, we study in depth the topos representation of the propositional language, PL(S), for the case of quantum theory. In doing so, we make a direct link with, and clarify, the earlier work on applying topos theory to quantum physics. The key step is a process we term `daseinisation' by which a projection operator is mapped to a sub-object of the spectral presheaf--the topos quantum analogue of a classical state space. In the second part of the paper we change gear with the introduction of the more sophisticated local language L(S). From this point forward, throughout the rest of the series of papers, our attention will be devoted almost entirely to this language. In the present paper, we use L(S) to study `truth objects' in the topos. These are objects in the topos that play the role of states: a necessary development as the spectral presheaf has no global elements, and hence there are no microstates in the sense of classical physics. Truth objects therefore play a crucial role in our formalism.Comment: 34 pages, no figure

    Relaxed Bell inequalities and Kochen-Specker theorems

    Full text link
    The combination of various physically plausible properties, such as no signaling, determinism, and experimental free will, is known to be incompatible with quantum correlations. Hence, these properties must be individually or jointly relaxed in any model of such correlations. The necessary degrees of relaxation are quantified here, via natural distance and information-theoretic measures. This allows quantitative comparisons between different models in terms of the resources, such as the number of bits, of randomness, communication, and/or correlation, that they require. For example, measurement dependence is a relatively strong resource for modeling singlet state correlations, with only 1/15 of one bit of correlation required between measurement settings and the underlying variable. It is shown how various 'relaxed' Bell inequalities may be obtained, which precisely specify the complementary degrees of relaxation required to model any given violation of a standard Bell inequality. The robustness of a class of Kochen-Specker theorems, to relaxation of measurement independence, is also investigated. It is shown that a theorem of Mermin remains valid unless measurement independence is relaxed by 1/3. The Conway-Kochen 'free will' theorem and a result of Hardy are less robust, failing if measurement independence is relaxed by only 6.5% and 4.5%, respectively. An appendix shows the existence of an outcome independent model is equivalent to the existence of a deterministic model.Comment: 19 pages (including 3 appendices); v3: minor clarifications, to appear in PR

    An entropic approach to local realism and noncontextuality

    Full text link
    For any Bell locality scenario (or Kochen-Specker noncontextuality scenario), the joint Shannon entropies of local (or noncontextual) models define a convex cone for which the non-trivial facets are tight entropic Bell (or contextuality) inequalities. In this paper we explore this entropic approach and derive tight entropic inequalities for various scenarios. One advantage of entropic inequalities is that they easily adapt to situations like bilocality scenarios, which have additional independence requirements that are non-linear on the level of probabilities, but linear on the level of entropies. Another advantage is that, despite the nonlinearity, taking detection inefficiencies into account turns out to be very simple. When joint measurements are conducted by a single detector only, the detector efficiency for witnessing quantum contextuality can be arbitrarily low.Comment: 12 pages, 8 figures, minor mistakes correcte

    Is there contextuality for a single qubit?

    Full text link
    It was presented by Cabello and Nakamura [A. Cabello, Phys. Rev. Lett. 90, 190401 (2003)], that the Kochen-Specker theorem applies to two dimensions if one uses Positive Operator-Valued Measures. We show that contextuality in their models is not of the Kochen-Specker type. It is rather the result of not keeping track of the whole system on which the measurement is performed. This is connected to the fact that there is no one-to-one correspondence between POVM elements and projectors on the extended Hilbert space and the same POVM element has to originate from two different projectors when used in Cabello's and Nakamura's models. Moreover, we propose a hidden-variable formulation of the above models.Comment: 4 pages, 1 figure, comments welcom

    The Free Will Theorem

    Full text link
    On the basis of three physical axioms, we prove that if the choice of a particular type of spin 1 experiment is not a function of the information accessible to the experimenters, then its outcome is equally not a function of the information accessible to the particles. We show that this result is robust, and deduce that neither hidden variable theories nor mechanisms of the GRW type for wave function collapse can be made relativistic. We also establish the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure
    corecore