634 research outputs found
RNA-Seq reveals virus–virus and virus–plant interactions in nature
As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus–virus and virus–host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus. Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1. Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant–virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications
Development of an intense positron source using a crystal--amorphous hybrid target for linear colliders
In a conventional positron source driven by a few GeV electron beam, a high
amount of heat is loaded into a positron converter target to generate intense
positrons required by linear colliders, and which would eventually damage the
converter target. A hybrid target, composed of a single crystal target as a
radiator of intense gamma--rays, and an amorphous converter target placed
downstream of the crystal, was proposed as a scheme which could overcome the
problem.This paper describes the development of an intense positron source with
the hybrid target. A series of experiments on positron generation with the
hybrid target has been carried out with a 8--GeV electron beam at the KEKB
linac. We observed that positron yield from the hybrid target increased when
the incident electron beam was aligned to the crystal axis and exceeded the one
from the conventional target with the converter target of the same thickness,
when its thickness is less than about 2 radiation length. The measurements in
the temperature rise of the amorphous converter target was successfully carried
out by use of thermocouples. These results lead to establishment to the
evaluation of the hybrid target as an intense positron source.Comment: 17pages, 10figure
Decoding the neural substrates of reward-related decision making with functional MRI
Although previous studies have implicated a diverse set of brain regions in reward-related decision making, it is not yet known which of these regions contain information that directly reflects a decision. Here, we measured brain activity using functional MRI in a group of subjects while they performed a simple reward-based decision-making task: probabilistic reversal-learning. We recorded brain activity from nine distinct regions of interest previously implicated in decision making and separated out local spatially distributed signals in each region from global differences in signal. Using a multivariate analysis approach, we determined the extent to which global and local signals could be used to decode subjects' subsequent behavioral choice, based on their brain activity on the preceding trial. We found that subjects' decisions could be decoded to a high level of accuracy on the basis of both local and global signals even before they were required to make a choice, and even before they knew which physical action would be required. Furthermore, the combined signals from three specific brain areas (anterior cingulate cortex, medial prefrontal cortex, and ventral striatum) were found to provide all of the information sufficient to decode subjects' decisions out of all of the regions we studied. These findings implicate a specific network of regions in encoding information relevant to subsequent behavioral choice
Decoding information in the human hippocampus: a user's guide
Multi-voxel pattern analysis (MVPA), or 'decoding', of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded, solely from the pattern of fMRI activity, it must mean there is information about that stimulus represented in the brain region where the pattern across voxels was identified. This ability to examine the representation of information relating to specific stimuli (e.g., memories) in particular brain areas makes MVPA an especially suitable method for investigating memory representations in brain structures such as the hippocampus. This approach could open up new opportunities to examine hippocampal representations in terms of their content, and how they might change over time, with aging, and pathology. Here we consider published MVPA studies that specifically focused on the hippocampus, and use them to illustrate the kinds of novel questions that can be addressed using MVPA. We then discuss some of the conceptual and methodological challenges that can arise when implementing MVPA in this context. Overall, we hope to highlight the potential utility of MVPA, when appropriately deployed, and provide some initial guidance to those considering MVPA as a means to investigate the hippocampus
Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria
We demonstrate and explain a simple and efficient way to remove gas bubbles
from liquid-filled microchannels, by integrating a hydrophobic porous membrane
on top of the microchannel. A prototype chip is manufactured in hard,
transparent polymer with the ability to completely filter gas plugs out of a
segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The
device involves a bubble generation section and a gas removal section. In the
bubble generation section, a T-junction is used to generate a train of gas
plugs into a water stream. These gas plugs are then transported towards the gas
removal section, where they slide along a hydrophobic membrane until complete
removal. The system has been successfully modeled and four necessary operating
criteria have been determined to achieve a complete separation of the gas from
the liquid. The first criterion is that the bubble length needs to be larger
than the channel diameter. The second criterion is that the gas plug should
stay on the membrane for a time sufficient to transport all the gas through the
membrane. The third criterion is that the gas plug travel speed should be lower
than a critical value: otherwise a stable liquid film between the bubble and
the membrane prevents mass transfer. The fourth criterion is that the pressure
difference across the membrane should not be larger than the Laplace pressure
to prevent water from leaking through the membrane
A SARS-CoV-2 recombinant spike protein vaccine (S-268019-b) for COVID-19 prevention during the Omicron-dominant period: a phase 3, randomised, placebo-controlled clinical trial
Clinical trials of new vaccines based on existing variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are often impacted by the emergence of new virus variants. We evaluated the efficacy, immunogenicity, and safety of S-268019-b, a recombinant spike protein subunit vaccine based on the ancestral strain, for preventing symptomatic coronavirus disease 2019 (COVID-19) during the Omicron (BA.2)-dominant period in Vietnam. In this multicentre, phase 3, randomised (2:1), observer-blind, placebo-controlled crossover study, participants received 2 intramuscular doses (28 days apart) of either 10 µg of S-268019-b (Recombinant S-protein vaccine) or placebo. The primary endpoint was incidence of laboratory-confirmed symptomatic COVID-19 before crossover, with onset within 14 days following the second dose, in participants who were seronegative and reverse transcription polymerase chain reaction (RT-PCR)-negative at baseline. The secondary endpoints included immunogenicity and safety. In total, 8,594 participants were randomised (S-268019-b [n = 5,727]; placebo [n = 2,867]). Vaccine efficacy versus placebo was 39·1 % (95 % confidence interval [CI]:26·6–49·5; one-sided P = 0·0723). The incidence rate (95 % CI) of symptomatic COVID-19 was 776·41/1,000 person-years (682·04–880·19) in the S-268019-b group and 1272·87/1,000 person-years (1101·32–1463·57) in the placebo group. The geometric mean titres (95 % CI) of the SARS-CoV-2 neutralising antibody increased on Day 57 versus baseline with S-268019-b (34·66 [27·04–44·41] versus 2·50 (non-estimable) but not with placebo. There were no safety concerns regarding S-268019-b. S-268019-b did not demonstrate the targeted efficacy threshold against symptomatic COVID-19; however, findings were comparable with other prophylactic vaccines based on ancestor strain during the Omicron-dominant period. S-268019-b demonstrated immunogenicity and was well-tolerated
Can ultrasound be used to stimulate nerve tissue?
BACKGROUND: The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. METHODS AND RESULTS: A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m(2 )at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. CONCLUSION: The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS
Evidence of the Purely Leptonic Decay B- --> tau- nu_tau-bar
We present the first evidence of the decay B- --> tau- nu_tau-bar using 414
fb^-1 of data collected at the Upsilon(4S) resonance with the Belle detector at
the KEKB asymmetric-energy e+e- collider. Events are tagged by fully
reconstructing one of the B mesons in hadronic modes. We detect the signal with
a significance of 3.5 standard deviations including systematics, and measure
the branching fraction to be Br(B- --> tau- nu_tau-bar) = (1.79
+0.56-0.49(stat) +0.46-0.51(syst))*10^-4. This implies that f_B = 0.229
+0.036-0.031(stat) +0.034-0.037(syst) GeV and is the first direct measurement
of this quantity.Comment: 6 pages, 3 figures, to appear in Physical Review Letter
Observation of Large CP Violation and Evidence for Direct CP Violation in B0-->pi+pi- Decays
We report the first observation of CP-violating asymmetries in B0 --> pi+pi-
decays based on a 140 fb-1 data sample collected at the Upsilon(4S) resonance
with the Belle detector at the KEKB asymmetric-energy e+e- collider. We
reconstruct one neutral B meson as a B0 --> pi+pi- CP eigenstate and identify
the flavor of the accompanying B meson from its decay products. We apply an
unbinned maximum likelihood fit to the distribution of the time intervals
between the two B meson decay points. The fit yields the CP-violating asymmetry
amplitudes Apipi = +0.58+/-0.15(stat)+/-0.07(syst) and Spipi =
-1.00+/-0.21(stat)+/-0.07(syst). We rule out the CP-conserving case,
Apipi=Spipi=0, at a level of 5.2 standard deviations. We also find evidence for
direct CP violation with a significance at or greater than 3.2 standard
deviations for any Spipi value.Comment: 9 pages, 3 figure
Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response
- …