1,027 research outputs found

    Paramagnetic Phase of a Heavy-Fermion Compound, CeFePO, Probed by 57Fe M\"{o}ssbauer Spectroscopy

    Full text link
    57Fe M\"{o}ssbauer spectroscopy was applied to an iron-based layered compound CeFePO. At temperatures from 9.4 to 293 K, no magnetic splitting was observed in the M\"ossbauer spectra of CeFePO indicating a paramagnetic phase of the Fe magnetic sublattice. All the spectra were fitted with a small quadrupole splitting, and the Debye temperature of CeFePO was found to be \sim448 K. The isomer shift at room temperature, 0.32 mm/s, was almost equal to those of LnFeAsO (Ln = La, Ce, Sm). Comparing s-electron density using the isomer shifts and unit cell volumes, it was found that the Fe of CeFePO has a similar valence state to other layered iron-based quaternary oxypnictides except LaFePO

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1−x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres

    Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor

    Full text link
    The electronic states of the FeAs plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model, where the tight-binding parameters are determined so as to fit the band structure obtained by the density functional calculation for LaFeAsO. The model includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the exchange coupling J and the pair-transfer J'. Within the random phase approximation (RPA), we discuss the pairing symmetry of possible superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008

    Systematic Study on Fluorine-doping Dependence of Superconducting and Normal State Properties in LaFePO1-xFx

    Full text link
    We have investigated the fluorine-doping dependence of lattice constants, transports and specific heat for polycrystalline LaFePO1-xFx. F doping slightly and monotonically decreases the in-plane lattice parameter. In the normal state, electrical resistivity at low temperature is proportional to the square of temperature and the electronic specific heat coefficient has large value, indicating the existence of moderate electron-electron correlation in this system. Hall coefficient has large magnitude, and shows large temperature dependence, indicating the low carrier density and multiple carriers in this system. Temperature dependence of the upper critical field suggests that the system is a two gap superconductor. The F-doping dependence of these properties in this system are very weak, while in the FeAs system (LaFeAsO), the F doping induces the large changes in electronic properties. This difference is probably due to the different F-doping dependence of the lattice in these two systems. It has been revealed that a pure effect of electron doping on electronic properties is very weak in this Fe pnictide compound.Comment: 8 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    The double life of electrons in magnetic iron pnictides, as revealed by NMR

    Full text link
    We present a phenomenological, two-fluid approach to understanding the magnetic excitations in Fe pnictides, in which a paramagnetic fluid with gapless, incoherent particle-hole excitations coexists with an antiferromagnetic fluid with gapped, coherent spin wave excitations. We show that this two-fluid phenomenology provides an excellent quantitative description of NMR data for magnetic "122" pnictides, and argue that it finds a natural justification in LSDA and spin density wave calculations. We further use this phenomenology to estimate the maximum renormalisation of the ordered moment that can follow from low-energy spin fluctuations in Fe pnictides. We find that this is too small to account for the discrepancy between ab intio calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure

    Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y (Ln=La,Nd)

    Full text link
    The crystal structure of LnFeAsO1−y_{1-y} (Ln = La, Nd) has been studied by the powder neutron diffraction technique. The superconducting phase diagram of NdFeAsO1−y_{1-y} is established as a function of oxygen content which is determined by Rietveld refinement. The small As-Fe bond length suggests that As and Fe atoms are connected covalently. FeAs4_4-tetrahedrons transform toward a regular shape with increasing oxygen deficiency. Superconducting transition temperatures seem to attain maximum values for regular FeAs4_4-tetrahedrons

    Fe-based superconductors: unity or diversity?

    Full text link
    Does the high temperature superconductivity observed in the newly discovered iron-pnictide materials represent another example of the same essential physics responsible for superconductivity in the cuprates, or does it embody a new mechanism?Comment: Some minor errors in the figure and in the reference in the published version are corrected. 2 pages, 2 figure

    A possible ground state and its electronic structure of a mother material (LaOFeAs) of new superconductors

    Full text link
    The electronic and magnetic properties of the mother material LaOFeAs of new superconductors have been carefully studied using first-principles electronic structure calculations based on the generalized gradient approximation in the density functional theory. The present calculation predicts that the ground state of LaOFeAs is antiferromagnetic with a stripe type magnetic moment alignment leading to orthorhombic symmetry of the crystal. In this particular magnetic state, the density of states at the Fermi level is very small. On the other hand, LaOFeP has turned out to be paramagnetic and a good metal. Implications of the results regarding the experimental observations will also be presented.Comment: This letter will be published in J. Phys. Soc. Jpn. {\bf 77} (2008) No.

    Magnetism and Superconductivity in the Two-Dimensional 16 Band d-p Model for Iron-Based Superconductors

    Full text link
    The electronic states of the Fe2As2 plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model which includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the Hund's coupling J and the pair-transfer J'. Using the random phase approximation (RPA), we obtain the magnetic phase diagram including the stripe and the incommensurate order on the U'-J plane. We also solve the superconducting gap equation within the RPA and find that, for large J, the most favorable pairing symmetry is extended s-wave whose order parameter changes its sign between the hole pockets and the electron pockets, while it is dxy-wave for small J.Comment: 4 pages, 5 figure
    • …
    corecore