95 research outputs found

    Modelling Effects of Agricultural Policies on Regional Greenhouse Gas Emissions From Cattle Raising Production Systems in Baden-Württemberg (Southwest Germany)

    Get PDF
    In the light of the anthropogenic climate change and the resulting need to mitigate greenhouse gas (GHG) emissions, policies are needed which efficiently abate GHG emissions in the agricultural sector. However, reliable estimates of regional GHG abatement potentials in the agricultural sector are rare because the models do not integrate the economic and environmental effects of different agricultural policies and are generally restricted to a single-gas approach. Coupling an economic sector model with a process-oriented ecosystem model can overcome this gap and thus provide realistic exante information of socioeconomically and environmentally sustainable agricultural policies

    Greenhouse gas emissions and energy use in UK-grown short-day strawberry (Fragaria xananassa Duch) crops

    Get PDF
    Original article can be found at: http://journals.cambridge.org/ Copyright Cambridge University PressReducing greenhouse gas emissions and optimizing energy consumption are important for mitigating climate change and improving resource use efficiency. Strawberry (Fragaria xananassa Duch) crops are a key component of the UK soft fruit sector and potentially resource-intensive crops. This is the first study to undertake a detailed environmental impact assessment of all methods of UK strawberry production. A total of 14 systems with six additional sub-systems grown for between 1 and 3 years were identified. They were defined by the growing of short-day (Junebearer) or everbearer varieties, organic production, covering with polytunnels or grown in the open, soil-grown (with or without fumigation) or container-grown (with peat or coir substrate) and summer or spring planted. Pre-harvest, the global warming potential varied between 1·5 and 10·3 t CO2 equiv/ha/crop or 0·13 and 1·14 t CO2 equiv/t of class 1 fruit. Key factors included the use of tunnels, mulch and irrigation, sterilization of soil with fumigants and the use of peat substrate. Seasonal crops without covers grown where rotation of sufficient length reduced Verticillium (system 4) were the most efficient. System 4a (that did not use mulch) emitted 0·13 t CO2 equiv/t of class 1 fruit. A second or third cropping year in soil-grown systems prolonged the effect of mulch and soil fumigants. Greenhouse gases from system 4 (with mulch) averaged 0·30 t CO2 equiv/t of class 1 fruit after 3 years of cropping compared to 0·63 and 0·36 t CO2 equiv/t after 1 and 2 years, respectively.Peer reviewe

    Nonsurgical and surgical periodontal therapy in single-rooted teeth

    Get PDF
    The purpose of this study was to compare the effect of tooth related and patient related factors on the success of non-surgical and surgical periodontal therapy. In 41 patients (22 female) with untreated and/or recurrent periodontitis, no therapy, scaling and root planing (SRP), or access flap (AF) were assigned according to probing pocket depth (PPD). PPD and vertical relative attachment level (RAL-V) were obtained initially, 3 and 6 months after therapy. Baseline data were compared according to therapy, jaw, tooth type, and site. Factors influencing clinical parameters were identified using multilevel analyses. Baseline PPDs were deeper interproximally, in the maxilla and at premolars compared to buccal/oral sites, mandibular, and anterior teeth. At 6 months, PPD reduction and RAL-V gain were significantly greater at sites receiving SRP and AF as compared to untreated sites (p < 0.001). PPD reduction and RAL-V gain were significantly less (p < 0.005) in smokers as compared to nosmokers and at interproximal sites (p < 0.0001) as compared to buccal/oral sites. RAL-V gain was less in aggressive periodontitis, and PPD reduction was less in the maxilla (p < 0.001). In sites with greater bone loss and infrabony defects, a poorer response was observed regarding RAL-V gain or PPD reduction, respectively. The conclusions of the study are the following: (1) Nonsurgical and surgical periodontal therapies are effective in single-rooted teeth; (2) severe interproximal bone loss and infrabony defects deteriorate clinical results; and (3) there seem to be more defect-associated (tooth, site) factors influencing treatment outcome than patient-associated factors

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    Sustainability of biohydrogen as fuel: Present scenario and future perspective

    Get PDF

    Potential of legume-based grassland - livestock systems in Europe: a review

    Get PDF
    European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system, and these are most effective in mixed swards with a legume proportion of 30-50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future

    Biomass Types for Pellet Production

    No full text
    corecore