859 research outputs found
Deep HST Imaging in NGC 6397: Stellar Dynamics
Multi-epoch observations with ACS on HST provide a unique and comprehensive
probe of stellar dynamics within NGC 6397. We are able to confront analytic
models of the globular cluster with the observed stellar proper motions. The
measured proper motions probe well along the main sequence from 0.8 to below
0.1 M as well as white dwarfs younger than one gigayear. The observed
field lies just beyond the half-light radius where standard models of globular
cluster dynamics (e.g. based on a lowered Maxwellian phase-space distribution)
make very robust predictions for the stellar proper motions as a function of
mass. The observed proper motions show no evidence for anisotropy in the
velocity distribution; furthermore, the observations agree in detail with a
straightforward model of the stellar distribution function. We do not find any
evidence that the young white dwarfs have received a natal kick in
contradiction with earlier results. Using the observed proper motions of the
main-sequence stars, we obtain a kinematic estimate of the distance to NGC 6397
of kpc and a mass of the cluster of at the photometric distance of 2.53 kpc. One of the
main-sequence stars appears to travel on a trajectory that will escape the
cluster, yielding an estimate of the evaporation timescale, over which the
number of stars in the cluster decreases by a factor of e, of about 3 Gyr. The
proper motions of the youngest white dwarfs appear to resemble those of the
most massive main-sequence stars, providing the first direct constraint on the
relaxation time of the stars in a globular cluster of greater than or about 0.7
Gyr.Comment: 25 pages, 20 figures, accepted for publication in Astrophysical
Journa
An Empirical Measure of the Rate of White Dwarf Cooling in 47 Tucanae
We present an empirical determination of the white dwarf cooling sequence in
the globular cluster 47 Tucanae. Using spectral models, we determine
temperatures for 887 objects from Wide Field Camera 3 data, as well as 292
objects from data taken with the Advanced Camera for Surveys. We make the
assumption that the rate of white dwarf formation in the cluster is constant.
Stellar evolution models are then used to determine the rate at which objects
are leaving the main sequence, which must be the same as the rate at which
objects are arriving on the white dwarf sequence in our field. The result is an
empirically derived relation between temperature () and time () on
the white dwarf cooling sequence. Comparing this result to theoretical cooling
models, we find general agreement with the expected slopes between 20,000K and
30,000K and between 6,000K and 20,000K, but the transition to the Mestel
cooling rate of is found to occur at hotter
temperatures, and more abruptly than is predicted by any of these models.Comment: 10 pages, 16 figures, accepted for publication in Ap
Carbon Stars and other Luminous Stellar Populations in M33
The M33 galaxy is a nearby, relatively metal-poor, late-type spiral. Its
proximity and almost face-on inclination means that it projects over a large
area on the sky, making it an ideal candidate for wide-field CCD mosaic
imaging. Photometry was obtained for more than 10^6 stars covering a 74' x 56'
field centered on M33. Main sequence (MS), supergiant branch (SGB), red giant
branch (RGB) and asymptotic giant branch (AGB) populations are identified and
classified based on broad-band V and I photometry. Narrow-band filters are used
to measure spectral features allowing the AGB population to be further divided
into C and M-star types. The galactic structure of M33 is examined using star
counts, colour-colour and colour-magnitude selected stellar populations. We use
the C to M-star ratio to investigate the metallicity gradient in the disk of
M33. The C/M-star ratio is found to increase and then flatten with increasing
galactocentric radius in agreement with viscous disk formation models. The
C-star luminosity function is found to be similar to M31 and the SMC,
suggesting that C-stars should be useful distance indicators. The ``spectacular
arcs of carbon stars'' in M33 postulated recently by Block et al. (2004) are
found in our work to be simply an extension of M33's disk.Comment: 20 pages, 20 figures. Accepted for publication in The Astronomical
Journa
The Progenitors of Dwarf Spheroidal Galaxies
Dwarf spheroidal (dSph) galaxies present an evolutionary puzzle that we
explore in 40 early- and late-type dwarfs in the Local Group and nearby field.
Although dSphs formed stars over extended periods, today all but one are free
of detectable interstellar matter (ISM), even in the Fornax dSph, where stars
still formed 100 Myr ago. Combining metallicities for red giants with HI data
from the literature, we show that the well-known offset in
luminosity-metallicity (L-Z) relations for dSphs and dwarf irregular (dIrr)
galaxies exists also when comparing only their old stellar populations: dSphs
have higher mean stellar metallicities for a fixed luminosity. Evidently
younger dSphs experienced more efficient enrichment than young dIrrs. Dwarf
galaxies, whose locus in the L-Z diagram is consistent with that of dSphs even
for baryonic luminosities, are the ``transition-type dwarfs'' Phoenix, DDO210,
LGS3, Antlia, and KKR25. They have mixed dIrr/dSph morphologies, low stellar
masses, low angular momentum, and HI contents of less than a few 10^6 solar
masses. Unlike dIrrs, many transition-type dwarfs would closely resemble dSphs
if their gas were removed; they are likely dSph progenitors. As gas removal is
key, we consider the empirical evidence for various gas removal processes. We
suggest that internal gas removal mechanisms are inadequate and favor ram
pressure stripping to make dSphs. A combination of initial conditions and
environment seems to support the formation of dSphs, which appear to form from
small galaxies with active early star formation, whose evolution halts due to
externally induced gas loss. Transition-type dwarfs then are dSphs that kept
their ISM, and therefore should replace dSphs in isolated locations where
stripping is ineffective. (Abridged)Comment: 25 pages in AASTeX two-column preprint style, 1 table, 3 figures.
Accepted for publication in the Astronomical Journal (April 2003 issue
A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit
We analytically work out several effects which a violation of the Strong
Equivalence Principle (SEP) induces on the orbital motion of a binary system
constituted of self-gravitating bodies immersed in a constant and uniform
external field. We do not restrict to the small eccentricity limit. Moreover,
we do not select any specific spatial orientation of the external polarizing
field. We explicitly calculate the SEP-induced mean rates of change of all the
osculating Keplerian orbital elements of the binary, the perturbation of the
projection of the binary orbit onto the line-of-sight, the shift of the radial
velocity, and the range and range-rate signatures and as well. We find that the
ratio of the SEP precessions of the node and the inclination of the binary
depends only on and the pericenter of the binary itself, being independent on
both the magnitude and the orientation of the polarizing field, and on the
semimajor axis, the eccentricity and the node of the binary. Our results, which
do not depend on any particular SEP-violating theoretical scheme, can be
applied to quite general astronomical and astrophysical scenarios. They can be
used to better interpret present and future SEP experiments, especially when
several theoretical SEP mechanisms may be involved, and to suitably design new
dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in
Classical and Quantum Gravity (CQG
An Extremely Massive White Dwarf Escaped from the Hyades Star Cluster
We searched the Gaia DR3 database for ultramassive white dwarfs with kinematics consistent with having escaped the nearby Hyades open cluster, identifying three such candidates. Two of these candidates have masses estimated from Gaia photometry of approximately 1.1 solar masses; their status as products of single-stellar evolution that have escaped the cluster was deemed too questionable for immediate follow-up analysis. The remaining candidate has an expected mass >1.3 solar masses, significantly reducing the probability of it being an interloper. Analysis of follow-up Gemini GMOS spectroscopy for this source reveals a nonmagnetized hydrogen atmosphere white dwarf with a mass and age consistent with having formed from a single star. Assuming a single-stellar-evolution formation channel, we estimate a 97.8% chance that the candidate is a true escapee from the Hyades. With a determined mass of 1.317 solar masses, this is potentially the most massive known single-evolution white dwarf and is by far the most massive with a strong association with an open cluster
The Spectral Energy Distributions of White Dwarfs in 47 Tucanae: The Distance to the Cluster
We present a new distance determination to the Galactic globular cluster 47
Tucanae by fitting the spectral energy distributions of its white dwarfs to
pure hydrogen atmosphere white dwarf models. Our photometric dataset is
obtained from a 121 orbit Hubble Space Telescope program using the Wide Field
Camera 3 UVIS/IR channels, capturing F390W, F606W, F110W, and F160W images.
These images cover more than 60 square arcmins and extend over a radial range
of 5-13.7 arcmin (6.5-17.9 pc) within the globular cluster. Using a likelihood
analysis, we obtain a best fitting unreddened distance modulus of (m -
M)o=13.36+/-0.02+/-0.06 corresponding to a distance of 4.70+/-0.04+/-0.13 kpc,
where the first error is random and the second is systematic. We also search
the white dwarf photometry for infrared excess in the F160W filter, indicative
of debris disks or low mass companions, and find no convincing cases within our
sample.Comment: Accepted to The Astronomical Journal, 13 Figures, 2 Tables. Figures 3
and 6 are figure sets, each composed of 59 subfigures (to appear in the
electronic journal). This is a Companion paper to the article ID:
submit/037561
Familial Recurrence of Cerebral Palsy with Multiple Risk Factors
The recurrence of cerebral palsy in the same family is uncommon. We, however, report on two families with two or more affected siblings. In both families, numerous potential risk factors were identified including environmental, obstetric, and possible maternal effects. We hypothesize that multiple risk factors may lead to the increased risk of recurrence of cerebral palsy in families. Intrinsic and maternal risk factors should be investigated in all cases of cerebral palsy to properly counsel families on the risk of recurrence. Recent studies of genetic polymorphisms associated with cerebral palsy are considered with reference to our observations in these two families
- …