228 research outputs found

    A Non-Renormalization Theorem for the d=1, N=8 Vector Multiplet

    Get PDF
    Sigma models describing low energy effective actions on D0-brane probes with N=8 supercharges are studied in detail using a manifestly d=1, N=4 super-space formalism. Two 0+1 dimensional N=4 multiplets together with their general actions are constructed. We derive the condition for these actions to be N=8 supersymmetric and apply these techniques to various D-brane configurations. We find that if in addition to N=8 supersymmetry the action must also have Spin(5) invariance, the form of the sigma model metric is uniquely determined by the one-loop result and is not renormalized perturbatively or non-perturbatively.Comment: Uses harvmac, 16 pages. We correct an error pointed out by E. Witte

    Which phase is measured in the mesoscopic Aharonov-Bohm interferometer?

    Full text link
    Mesoscopic solid state Aharonov-Bohm interferometers have been used to measure the "intrinsic" phase, αQD\alpha_{QD}, of the resonant quantum transmission amplitude through a quantum dot (QD). For a two-terminal "closed" interferometer, which conserves the electron current, Onsager's relations require that the measured phase shift β\beta only "jumps" between 0 and π\pi. Additional terminals open the interferometer but then β\beta depends on the details of the opening. Using a theoretical model, we present quantitative criteria (which can be tested experimentally) for β\beta to be equal to the desired αQD\alpha_{QD}: the "lossy" channels near the QD should have both a small transmission and a small reflection

    Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates

    Full text link
    We present a detailed calculation of the magnetic couplings between nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing geometry, ubiquitous in many cuprates. In this geometry, the interaction between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu angle is close to 90 degrees. The derivation is based on a perturbation expansion of a general Hubbard Hamiltonian, and produces numerical estimates for the various magnetic energies. In particular we find the dependence of the anisotropy energies on the angular deviation away from the 90 degrees geometry of the Cu-O-Cu bonds. Our results are required for the correct analysis of the magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure

    Unusual Symmetries in the Kugel-Khomskii Hamiltonian

    Get PDF
    The Kugel-Khomskii Hamiltonian for cubic titanates describes spin and orbital superexchange interactions between d1d^1 ions having three-fold degenerate t2gt_{2g} orbitals. Since orbitals do not couple along "inactive" axes, perpendicular to the orbital planes, the total number of electrons in α>|\alpha > orbitals in any such plane and the corresponding total spin are both conserved. A Mermin-Wagner construction shows that there is no long-range spin ordering at nonzero temperatures. Inclusion of spin-orbit coupling allows such ordering, but even then the excitation spectrum is gapless due to a continuous symmetry. Thus, the observed order and gap require more symmetry breaking terms.Comment: 4 pages (two column format with 2 figures), to appear in Phys. Rev. Lett. (submitted on Dec. 2002

    Fano Effect in a Few-Electron Quantum Dot

    Full text link
    We have studied the Fano effect in a few-electron quantum dot side-coupled to a quantum wire. The conductance of the wire, which shows an ordinal staircase-like quantization without the dot, is modified through the interference (the Fano effect) and the charging effects. These effects are utilized to verify the exhaustion of electrons in the dot. The "addition energy spectrum" of the dot shows a shell structure, indicating that the electron confinement potential is fairly circular. A rapid sign inversion of the Fano parameter on the first conductance plateau with the change of the wire gate voltage has been observed, and explained by introducing a finite width of dot-wire coupling.Comment: 11 pages, 7 figure

    Direct Observation of the Quantum Energy Gap in S = 1/2 Tetragonal Cuprate Antiferromagnets

    Get PDF
    Using an electron spin resonance spectrometer covering a wide range of frequency and magnetic field, we have measured the low energy excitations of the S=1/2 tetragonal antiferromagnets, Sr_{2}CuO_{2}Cl_{2} and Sr_{2}Cu_{3}O_{4}Cl_{2}. Our observation of in-plane energy gaps of order 0.1 meV at zero external magnetic field are consistent with a spin wave calculation, which includes several kinds of quantum fluctuations that remove frustration. Results agree with other experiments and with exchange anisotropy parameters determined from a five band Hubbard model.Comment: 4 pages, 3 figure

    Random Matrix Theory of Transition Strengths and Universal Magnetoconductance in the Strongly Localized Regime

    Full text link
    Random matrix theory of the transition strengths is applied to transport in the strongly localized regime. The crossover distribution function between the different ensembles is derived and used to predict quantitatively the {\sl universal} magnetoconductance curves in the absence and in the presence of spin-orbit scattering. These predictions are confirmed numerically.Comment: 15 pages and two figures in postscript, revte

    Competing Magnetic Phases on a "Kagome Staircase"

    Get PDF
    We present thermodynamic and neutron data on Ni_3V_2O_8, a spin-1 system on a kagome staircase. The extreme degeneracy of the kagome antiferromagnet is lifted to produce two incommensurate phases at finite T - one amplitude modulated, the other helical - plus a commensurate canted antiferromagnet for T ->0. The H-T phase diagram is described by a model of competing first and second neighbor interactions with smaller anisotropic terms. Ni_3V_2O_8 thus provides an elegant example of order from sub leading interactions in a highly frustrated systemComment: 4 pages, 3 figure

    Coulomb Blockade Resonances in Quantum Wires

    Full text link
    The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this 'open' quantum dot exhibits spin-dependent Coulomb blockade resonances resulting in two anomalous structure on the rising edge to the first conductance plateau, one near 0.25(2e^2/h), related to a singlet resonance, and one near 0.7(2e^2/h), related to a triplet resonance. These resonances are generic and robust, occurring for other types of quantum wire and surviving to temperatures of a few degrees.Comment: 5 pages, 3 postscript files with figures; uses REVTe

    Transient electrical conductivity of W-based electron beam induced deposits during growth, irradiation and exposure to air

    Full text link
    W-based granular metals have been prepared by electron beam induced deposition from the tungsten-hexacarbonyl W(CO)6 precursor. In situ electrical conductivity measurements have been performed to monitor the growth process and to investigate the behavior of the deposit under electron beam post irradiation and by exposure to air. During the first part of the growth process, the electrical conductivity grows non-linearly, independent of the electron beam parameters. This behavior is interpreted as the result of the increase of the W-particles diameter. Once the growth process is terminated, the electrical conductivity decreases with the logarithm of time, sigma ln(t). Temperature-dependent conductivity measurements of the deposits reveal that the electrical transport takes place by means of electron tunneling either between W-metal grains or between grains and trap sites in the matrix. After venting the electron microscope the electrical conductivity of the deposits shows a degradation behavior, which depends on the composition. Electron post-irradiation increases the electrical conductivity of the deposits
    corecore