19 research outputs found

    Neuropathology of White Matter Lesions, Blood-Brain Barrier Dysfunction, and Dementia.

    No full text
    BACKGROUND AND PURPOSE: We tested whether blood-brain barrier dysfunction in subcortical white matter is associated with white matter abnormalities or risk of clinical dementia in older people (n=126; mean age 86.4, SD: 7.7 years) in the MRC CFAS (Medical Research Council Cognitive Function and Ageing Study). METHODS: Using digital pathology, we quantified blood-brain barrier dysfunction (defined by immunohistochemical labeling for the plasma marker fibrinogen). This was assessed within subcortical white matter tissue samples harvested from postmortem T2 magnetic resonance imaging (MRI)-detected white matter hyperintensities, from normal-appearing white matter (distant from coexistent MRI-defined hyperintensities), and from equivalent areas in MRI normal brains. Histopathologic lesions were defined using a marker for phagocytic microglia (CD68, clone PGM1). RESULTS: Extent of fibrinogen labeling was not significantly associated with white matter abnormalities defined either by MRI (odds ratio, 0.90; 95% confidence interval, 0.79-1.03; P=0.130) or by histopathology (odds ratio, 0.93; 95% confidence interval, 0.77-1.12; P=0.452). Among participants with normal MRI (no detectable white matter hyperintensities), increased fibrinogen was significantly related to decreased risk of clinical dementia (odds ratio, 0.74; 95% confidence interval, 0.58-0.94; P=0.013). Among participants with histological lesions, increased fibrinogen was related to increased risk of dementia (odds ratio, 2.26; 95% confidence interval, 1.25-4.08; P=0.007). CONCLUSIONS: Our data suggest that some degree of blood-brain barrier dysfunction is common in older people and that this may be related to clinical dementia risk, additional to standard MRI biomarkers
    corecore