229 research outputs found
Critical spin-flip scattering at the helimagnetic transition of MnSi
We report spherical neutron polarimetry (SNP) and discuss the spin-flip
scattering cross sections as well as the chiral fraction close to the
helimagnetic transition in MnSi. For our study, we have developed a
miniaturised SNP device that allows fast data collection when used in small
angle scattering geometry with an area detector. Critical spin-flip scattering
is found to be governed by chiral paramagnons that soften on a sphere in
momentum space. Carefully accounting for the incoherent spin-flip background,
we find that the resulting chiral fraction decreases gradually above the
helimagnetic transition reflecting a strongly renormalised chiral correlation
length with a temperature dependence in excellent quantitative agreement with
the Brazovskii theory for a fluctuation-induced first order transition.Comment: 5 pages, 3 figure
A simplified particulate model for coarse-grained hemodynamics simulations
Human blood flow is a multi-scale problem: in first approximation, blood is a
dense suspension of plasma and deformable red cells. Physiological vessel
diameters range from about one to thousands of cell radii. Current
computational models either involve a homogeneous fluid and cannot track
particulate effects or describe a relatively small number of cells with high
resolution, but are incapable to reach relevant time and length scales. Our
approach is to simplify much further than existing particulate models. We
combine well established methods from other areas of physics in order to find
the essential ingredients for a minimalist description that still recovers
hemorheology. These ingredients are a lattice Boltzmann method describing rigid
particle suspensions to account for hydrodynamic long range interactions
and---in order to describe the more complex short-range behavior of
cells---anisotropic model potentials known from molecular dynamics simulations.
Paying detailedness, we achieve an efficient and scalable implementation which
is crucial for our ultimate goal: establishing a link between the collective
behavior of millions of cells and the macroscopic properties of blood in
realistic flow situations. In this paper we present our model and demonstrate
its applicability to conditions typical for the microvasculature.Comment: 12 pages, 11 figure
Low temperature magnetic structure of CeRhIn by neutron diffraction on absorption-optimized samples
Two aspects of the ambient pressure magnetic structure of heavy fermion
material CeRhIn have remained under some debate since its discovery:
whether the structure is indeed an incommensurate helix or a spin density wave,
and what is the precise magnitude of the ordered magnetic moment. By using a
single crystal sample optimized for hot neutrons to minimize neutron absorption
by Rh and In, here we report an ordered moment of . In
addition, by using spherical neutron polarimetry measurements on a similar
single crystal sample, we have confirmed the helical nature of the magnetic
structure, and identified a single chiral domain
- …