4 research outputs found

    A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology

    No full text
    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications

    Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source

    No full text
    The development and demonstration of a table-top transmission soft X-ray (SXR) microscope, using a laboratory incoherent capillary discharge source has been carried out. This Z-pinching capillary discharge water-window SXR source, is a first of its kind to be used for high spatial resolution microscopy at λ = 2.88 nm (430 eV) . A grazing incidence ellipsoidal condenser mirror is used for focusing of the SXR radiation at the sample plane. The Fresnel zone plate objective lens is used for imaging of the sample onto a back-illuminated (BI) CCD camera. The achieved half-pitch spatial resolution of the microscope approaches 100 nm, as demonstrated by the knife-edge test. Details about the source, and the construction of the microscope are presented and discussed. Additionally, the SXR images of various samples, proving applicability of such microscope for observation of objects in the nanoscale, are shown
    corecore