22 research outputs found

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087ā€“2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    The petFI gene encoding ferredoxin I is located close to the str operon on the cyanelle genome of Cyanophora paradoxa

    Get PDF
    AbstractThe petFI gene encoding ferredoxin I was localized in the large single copy region of cyanelle DNA by heterologous hybridization. Sequence analysis revealed an ORF of 99 amino acids (including the N-tenninal processed methionine) at a position 477 bp from the 3' end of tufA but on the opposite strand. The 25 ammo-terminal residues well corresponded to partial sequences obtained with purified cyanelle ferredoxin. The assignment of yet another gene that is not found on the genomes of chlorophyll Ī²-type plastids to cyanelle DNA again corroborates the special position of cyanelles serving as a model for plastid evolution from endocytobiotic cyanobacteria

    Recombinant cellulase accumulation in the leaves of mature, vegetatively propagated transgenic sugarcane

    No full text
    The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases
    corecore