2,183 research outputs found

    Stresses in Smooth Flows of Dense Granular Media

    Get PDF
    The form of the stress tensor is investigated in smooth, dense granular flows which are generated in split-bottom shear geometries. We find that, within a fluctuation fluidized spatial region, the form of the stress tensor is directly dictated by the flow field: The stress and strain-rate tensors are co-linear. The effective friction, defined as the ratio between shear and normal stresses acting on a shearing plane, is found not to be constant but to vary throughout the flowing zone. This variation can not be explained by inertial effects, but appears to be set by the local geometry of the flow field. This is in agreement with a recent prediction, but in contrast with most models for slow grain flows, and points to there being a subtle mechanism that selects the flow profiles.Comment: 5 pages, 4 figure

    Force network ensemble: a new approach to static granular matter

    Get PDF
    An ensemble approach for force distributions in static granular packings is developed. This framework is based on the separation of packing and force scales, together with an a-priori flat measure in the force phase space under the constraints that the contact forces are repulsive and balance on every particle. We show how the formalism yields realistic results, both for disordered and regular ``snooker ball'' configurations, and obtain a shear-induced unjamming transition of the type proposed recently for athermal media.Comment: 4 pages, 4 figures, changed conten

    Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations

    Get PDF
    In many pattern forming systems that exhibit traveling waves, sources and sinks occur which separate patches of oppositely traveling waves. We show that simple qualitative features of their dynamics can be compared to predictions from coupled amplitude equations. In heated wire convection experiments, we find a discrepancy between the observed multiplicity of sources and theoretical predictions. The expression for the observed motion of sinks is incompatible with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur

    Sheared force-networks: anisotropies, yielding and geometry

    Get PDF
    A scenario for yielding of granular matter is presented by considering the ensemble of force networks for a given contact network and applied shear stress Ï„\tau. As Ï„\tau is increased, the probability distribution of contact forces becomes highly anisotropic, the difference between average contact forces along minor and major axis grows, and the allowed networks span a shrinking subspace of all force-networks. Eventually, contacts start to break, and at the yielding shear stress, the packing becomes effectively isostatic. The size of the allowed subspace exhibits simple scaling properties, which lead to a prediction of the yield stress for packings of arbitrary contact number.Comment: 4 pages, 4 figure

    Critical jamming of frictional grains in the generalized isostaticity picture

    Get PDF
    While frictionless spheres at jamming are isostatic, frictional spheres at jamming are not. As a result, frictional spheres near jamming do not necessarily exhibit an excess of soft modes. However, a generalized form of isostaticity can be introduced if fully mobilized contacts at the Coulomb friction threshold are considered as slipping contacts. We show here that, in this framework, the vibrational density of states (DOS) of frictional discs exhibits a plateau when the generalized isostaticity line is approached. The crossover frequency to elastic behavior scales linearly with the distance from this line. Moreover, we show that the frictionless limit, which appears singular when fully mobilized contacts are treated elastically, becomes smooth when fully mobilized contacts are allowed to slip.Comment: 4 pages, 4 figures, submitted to PR

    Universal and wide shear zones in granular bulk flow

    Get PDF
    We present experiments on slow granular flows in a modified (split-bottomed) Couette geometry in which wide and tunable shear zones are created away from the sidewalls. For increasing layer heights, the zones grow wider (apparently without bound) and evolve towards the inner cylinder according to a simple, particle-independent scaling law. After rescaling, the velocity profiles across the zones fall onto a universal master curve given by an error function. We study the shear zones also inside the material as function of both their local height and the total layer height.Comment: Minor corrections, accepted for PRL (4 pages, 6 figures

    Continuum approach to wide shear zones in quasi-static granular matter

    Get PDF
    Slow and dense granular flows often exhibit narrow shear bands, making them ill-suited for a continuum description. However, smooth granular flows have been shown to occur in specific geometries such as linear shear in the absence of gravity, slow inclined plane flows and, recently, flows in split-bottom Couette geometries. The wide shear regions in these systems should be amenable to a continuum description, and the theoretical challenge lies in finding constitutive relations between the internal stresses and the flow field. We propose a set of testable constitutive assumptions, including rate-independence, and investigate the additional restrictions on the constitutive relations imposed by the flow geometries. The wide shear layers in the highly symmetric linear shear and inclined plane flows are consistent with the simple constitutive assumption that, in analogy with solid friction, the effective-friction coefficient (ratio between shear and normal stresses) is a constant. However, this standard picture of granular flows is shown to be inconsistent with flows in the less symmetric split-bottom geometry - here the effective friction coefficient must vary throughout the shear zone, or else the shear zone localizes. We suggest that a subtle dependence of the effective-friction coefficient on the orientation of the sliding layers with respect to the bulk force is crucial for the understanding of slow granular flows.Comment: 11 pages, 7 figure

    Ensemble Theory for Force Networks in Hyperstatic Granular Matter

    Get PDF
    An ensemble approach for force networks in static granular packings is developed. The framework is based on the separation of packing and force scales, together with an a-priori flat measure in the force phase space under the constraints that the contact forces are repulsive and balance on every particle. In this paper we will give a general formulation of this force network ensemble, and derive the general expression for the force distribution P(f)P(f). For small regular packings these probability densities are obtained in closed form, while for larger packings we present a systematic numerical analysis. Since technically the problem can be written as a non-invertible matrix problem (where the matrix is determined by the contact geometry), we study what happens if we perturb the packing matrix or replace it by a random matrix. The resulting P(f)P(f)'s differ significantly from those of normal packings, which touches upon the deep question of how network statistics is related to the underlying network structure. Overall, the ensemble formulation opens up a new perspective on force networks that is analytically accessible, and which may find applications beyond granular matter.Comment: 17 pages, 17 figure

    Bounds on the shear load of cohesionless granular matter

    Full text link
    We characterize the force state of shear-loaded granular matter by relating the macroscopic stress to statistical properties of the force network. The purely repulsive nature of the interaction between grains naturally provides an upper bound for the sustainable shear stress, which we analyze using an optimization procedure inspired by the so-called force network ensemble. We establish a relation between the maximum possible shear resistance and the friction coefficient between individual grains, and find that anisotropies of the contact network (or the fabric tensor) only have a subdominant effect. These results can be considered the hyperstatic limit of the force network ensemble and we discuss possible implications for real systems. Finally, we argue how force anisotropies can be related quantitatively to experimental measurements of the effective elastic constants.Comment: 17 pages, 6 figures. v2: slightly rearranged, introduction and discussion rewritte
    • …
    corecore