2,183 research outputs found
Stresses in Smooth Flows of Dense Granular Media
The form of the stress tensor is investigated in smooth, dense granular flows
which are generated in split-bottom shear geometries. We find that, within a
fluctuation fluidized spatial region, the form of the stress tensor is directly
dictated by the flow field: The stress and strain-rate tensors are co-linear.
The effective friction, defined as the ratio between shear and normal stresses
acting on a shearing plane, is found not to be constant but to vary throughout
the flowing zone. This variation can not be explained by inertial effects, but
appears to be set by the local geometry of the flow field. This is in agreement
with a recent prediction, but in contrast with most models for slow grain
flows, and points to there being a subtle mechanism that selects the flow
profiles.Comment: 5 pages, 4 figure
Force network ensemble: a new approach to static granular matter
An ensemble approach for force distributions in static granular packings is
developed. This framework is based on the separation of packing and force
scales, together with an a-priori flat measure in the force phase space under
the constraints that the contact forces are repulsive and balance on every
particle. We show how the formalism yields realistic results, both for
disordered and regular ``snooker ball'' configurations, and obtain a
shear-induced unjamming transition of the type proposed recently for athermal
media.Comment: 4 pages, 4 figures, changed conten
Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations
In many pattern forming systems that exhibit traveling waves, sources and
sinks occur which separate patches of oppositely traveling waves. We show that
simple qualitative features of their dynamics can be compared to predictions
from coupled amplitude equations. In heated wire convection experiments, we
find a discrepancy between the observed multiplicity of sources and theoretical
predictions. The expression for the observed motion of sinks is incompatible
with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur
Sheared force-networks: anisotropies, yielding and geometry
A scenario for yielding of granular matter is presented by considering the
ensemble of force networks for a given contact network and applied shear stress
. As is increased, the probability distribution of contact forces
becomes highly anisotropic, the difference between average contact forces along
minor and major axis grows, and the allowed networks span a shrinking subspace
of all force-networks. Eventually, contacts start to break, and at the yielding
shear stress, the packing becomes effectively isostatic. The size of the
allowed subspace exhibits simple scaling properties, which lead to a prediction
of the yield stress for packings of arbitrary contact number.Comment: 4 pages, 4 figure
Critical jamming of frictional grains in the generalized isostaticity picture
While frictionless spheres at jamming are isostatic, frictional spheres at
jamming are not. As a result, frictional spheres near jamming do not
necessarily exhibit an excess of soft modes. However, a generalized form of
isostaticity can be introduced if fully mobilized contacts at the Coulomb
friction threshold are considered as slipping contacts. We show here that, in
this framework, the vibrational density of states (DOS) of frictional discs
exhibits a plateau when the generalized isostaticity line is approached. The
crossover frequency to elastic behavior scales linearly with the distance from
this line. Moreover, we show that the frictionless limit, which appears
singular when fully mobilized contacts are treated elastically, becomes smooth
when fully mobilized contacts are allowed to slip.Comment: 4 pages, 4 figures, submitted to PR
Universal and wide shear zones in granular bulk flow
We present experiments on slow granular flows in a modified (split-bottomed)
Couette geometry in which wide and tunable shear zones are created away from
the sidewalls. For increasing layer heights, the zones grow wider (apparently
without bound) and evolve towards the inner cylinder according to a simple,
particle-independent scaling law. After rescaling, the velocity profiles across
the zones fall onto a universal master curve given by an error function. We
study the shear zones also inside the material as function of both their local
height and the total layer height.Comment: Minor corrections, accepted for PRL (4 pages, 6 figures
Continuum approach to wide shear zones in quasi-static granular matter
Slow and dense granular flows often exhibit narrow shear bands, making them
ill-suited for a continuum description. However, smooth granular flows have
been shown to occur in specific geometries such as linear shear in the absence
of gravity, slow inclined plane flows and, recently, flows in split-bottom
Couette geometries. The wide shear regions in these systems should be amenable
to a continuum description, and the theoretical challenge lies in finding
constitutive relations between the internal stresses and the flow field. We
propose a set of testable constitutive assumptions, including
rate-independence, and investigate the additional restrictions on the
constitutive relations imposed by the flow geometries. The wide shear layers in
the highly symmetric linear shear and inclined plane flows are consistent with
the simple constitutive assumption that, in analogy with solid friction, the
effective-friction coefficient (ratio between shear and normal stresses) is a
constant. However, this standard picture of granular flows is shown to be
inconsistent with flows in the less symmetric split-bottom geometry - here the
effective friction coefficient must vary throughout the shear zone, or else the
shear zone localizes. We suggest that a subtle dependence of the
effective-friction coefficient on the orientation of the sliding layers with
respect to the bulk force is crucial for the understanding of slow granular
flows.Comment: 11 pages, 7 figure
Ensemble Theory for Force Networks in Hyperstatic Granular Matter
An ensemble approach for force networks in static granular packings is
developed. The framework is based on the separation of packing and force
scales, together with an a-priori flat measure in the force phase space under
the constraints that the contact forces are repulsive and balance on every
particle. In this paper we will give a general formulation of this force
network ensemble, and derive the general expression for the force distribution
. For small regular packings these probability densities are obtained in
closed form, while for larger packings we present a systematic numerical
analysis. Since technically the problem can be written as a non-invertible
matrix problem (where the matrix is determined by the contact geometry), we
study what happens if we perturb the packing matrix or replace it by a random
matrix. The resulting 's differ significantly from those of normal
packings, which touches upon the deep question of how network statistics is
related to the underlying network structure. Overall, the ensemble formulation
opens up a new perspective on force networks that is analytically accessible,
and which may find applications beyond granular matter.Comment: 17 pages, 17 figure
Bounds on the shear load of cohesionless granular matter
We characterize the force state of shear-loaded granular matter by relating
the macroscopic stress to statistical properties of the force network. The
purely repulsive nature of the interaction between grains naturally provides an
upper bound for the sustainable shear stress, which we analyze using an
optimization procedure inspired by the so-called force network ensemble. We
establish a relation between the maximum possible shear resistance and the
friction coefficient between individual grains, and find that anisotropies of
the contact network (or the fabric tensor) only have a subdominant effect.
These results can be considered the hyperstatic limit of the force network
ensemble and we discuss possible implications for real systems. Finally, we
argue how force anisotropies can be related quantitatively to experimental
measurements of the effective elastic constants.Comment: 17 pages, 6 figures. v2: slightly rearranged, introduction and
discussion rewritte
- …