2,833,242 research outputs found

    Bragg spectroscopy of an accelerating condensate with solitary-wave behaviour

    Full text link
    We present a theoretical treatment of Bragg spectroscopy of an accelerating condensate in a solitary-wave state. Our treatment is based on the Gross-Pitaevskii equation with an optical potential representing the Bragg pulse and an additional external time-dependent potential generating the solitary-wave behaviour. By transforming to a frame translating with the condensate, we derive an approximate set of equations that can be readily solved to generate approximate Bragg spectra. Our analytic method is accurate within a well defined parameter regime and provides physical insight into the structure of the spectra. We illustrate our formalism using the example of Bragg spectroscopy of a condensate in a time-averaged orbiting potential trap.Comment: 9 pages, 3 figure

    Associative learning in baboons and humans: Species differences in learned attention to visual features

    Get PDF
    We examined attention shifting in baboons and humans during the learning of visual categories. Within a conditional matching-to-sample task, participants of the two species sequentially learned two two-feature categories which shared a common feature. Results showed that humans encoded both features of the initially learned category, but predominantly only the distinctive feature of the subsequently learned category. Although baboons initially encoded both features of the first category, they ultimately retained only the distinctive features of each category. Empirical data from the two species were analyzed with the 1996 ADIT connectionist model of Kruschke. ADIT fits the baboon data when the attentional shift rate is zero, and the human data when the attentional shift rate is not zero. These empirical and modeling results suggest species differences in learned attention to visual features

    Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures

    Full text link
    Dynamical mean-field theory is employed to calculate the electronic charge reconstruction of multilayered inhomogeneous devices composed of semi-infinite metallic lead layers sandwiching barrier planes of a strongly correlated material (that can be tuned through the metal-insulator Mott transition). The main focus is on barriers that are doped Mott insulators, and how the electronic charge reconstruction can create well-defined Mott insulating regions in a device whose thickness is governed by intrinsic materials properties, and hence may be able to be reproducibly made.Comment: 9 pages, 8 figure

    Dynamical Objectivity in Quantum Brownian Motion

    Full text link
    Classical objectivity as a property of quantum states---a view proposed to explain the observer-independent character of our world from quantum theory, is an important step in bridging the quantum-classical gap. It was recently derived in terms of spectrum broadcast structures for small objects embedded in noisy photon-like environments. However, two fundamental problems have arisen: a description of objective motion and applicability to other types of environments. Here we derive an example of objective states of motion in quantum mechanics by showing a formation of dynamical spectrum broadcast structures in the celebrated, realistic model of decoherence---Quantum Brownian Motion. We do it for realistic, thermal environments and show their noise-robustness. This opens a potentially new method of studying quantum-to-classical transition.Comment: 6 pages, 3 figures, accepted for publication in EP

    Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides

    Full text link
    Coupled plasmon modes are studied in graded plasmonic waveguides, which are periodic chains of metallic nanoparticles embedded in a host with gradually varying refractive indices. We identify three types of localized modes called "light", "heavy", and "light-heavy" plasmonic gradons outside the passband, according to various degrees of localization. We also demonstrate new transitions among extended and localized modes when the interparticle separation dd is smaller than a critical dcd_c, whereas the three types of localized modes occur for d>dcd>d_c, with no extended modes. The transitions can be explained with phase diagrams constructed for the lossless metallic systems.Comment: Preliminary results have been presented at ETOPIM 7. Submitted to Appl. Phys. Let
    • ā€¦
    corecore