106 research outputs found

    Material modelling and springback analysis for multi-stage rotary draw bending of thin-walled tube using homogeneous anisotropic hardening model

    Get PDF
    The aim of this paper is to compare several hardening models and to show their relevance for the prediction of springback and deformation of an asymmetric aluminium alloy tube in multi-stage rotary draw bending process. A three-dimensional finite-element model of the process is developed using the ABAQUS code. For material modelling, the newly developed homogeneous anisotropic hardening model is adopted to capture the Bauschinger effect and transient hardening behaviour of the aluminium alloy tube subjected to non-proportional loading. The material parameters of the hardening model are obtained from uniaxial tension and forward-reverse shear test results of tube specimens. This work shows that this approach reproduces the transient Bauschinger behaviour of the material reasonably well. However, a curve-crossing phenomenon observed for this material cannot be captured by the homogeneous anisotropic hardening model. For comparison purpose, the isotropic and combined isotropic-kinematic hardening models are also adopted for the analysis of the same problem. The predictions of springback and cross-section deformation based on these models are discussed. (C) 2014 The Authors. Published by Elsevier Ltd.open1134Nsciescopu

    Numerical simulation of the mechanical response during strain path change: application to Zn alloys.

    Get PDF
    The microstructure-based hardening model (Beyerlein and Tome, 2007), that accounts for the dislocation reversal-related mechanisms and the cut-through effect, is extended to HCP metals. This model, which is embedded in the visco-plastic self-consistent framework, is applied in this work to predict the mechanical response of Zn alloy during strain path change. The predicted mechanical behavior and texture evolution during pre-loading and reloading is in good agreement with experimental observations. The change in hardening behavior after reloading is well reproduced by this model. The contributions of the different mechanisms are also analyzed. (C) 2014 Published by Elsevier Ltd.open1111Nsciescopu

    Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale

    Get PDF
    Polydopamine films have been introduced by Messersmith et al. as a possible “versatile” surface functionalization method allowing to coat the surface of almost all known materials even superhydrophobic surfaces. These new kinds of coatings also confer a plethora of functionalities to the coated materials owing to the complex chemistry of the catechol quinone moieties present on the surface of polydopamine. These coatings may hence become an interesting alternative to established surface coatings like self-assembled monolayers and polyelectrolyte multilayered films. In this review, we describe the knowledge acquired in the last 3 years about the deposition mechanisms of polydopamine films, their properties, and various applications in surface science at the nanoscale.Fonds Europeen de Developpement Economique et Regional (Chaptochem Project 2009-02-039-35

    Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets

    No full text
    Finite element (FE) simulations of the simple shear test were conducted for 1050-O and 6022-T4 aluminum alloy sheet samples. Simulations were conducted with two different constitutive equations to account for plastic anisotropy: Either a recently proposed anisotropic yield function combined with an isotropic strain hardening law or a crystal plasticity model. The FE computed shear stress-shear strain curves were compared to the experimental curves measured for the two materials in previous works. Both phenomenological and polycrystal approaches led to results consistent with the experiments. These comparisons lead to a discussion concerning the assessment of anisotropic hardening in the simple shear test

    A study of diamond film deposition on WC-Co inserts for graphite machining: Effectiveness of SiC interlayers prepared by HFCVD

    No full text
    Thin silicon carbide (SiC) films were deposited from tetramethylsilame/hydrogen gas mixture on Co-cemented tungsten carbide (WC-Co) inserts by using Hot-Filament Chemical Vapour Deposition (HFCVD) technique. Grazing incidence X-Ray Diffraction (XRD) confirmed that the films were composed of cubic silicon carbide (beta-SiC) and that small amounts of clicobalt silicide (Co2Si) were formed. These films were used as intedayers for subsequent CVD of diamond films. XRD and combined Scanning and Transmission Electron Microscopies showed that the binder phase reacted during CVD to form cobalt silicides. However, these intermetallic compounds did not have bad effects on diamond adhesion. Dry turning of graphite was chosen to check the multilayer (SiC+diamond) film performance. For the sake of comparison, machining tests were also carried out under identical conditions using commercial sintered diamond (PCD) inserts and WC-Co diamond coated inserts with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results showed that multilayer (SiC+diamond) coatings exhibited the longest tool lives. Therefore, thin Sic interlayers proved to be a new viable alternative and a suitable option for adherent diamond coatings on cemented carbide components and cutting tools. (C) 2008 Elsevier B.V. All rights reserved

    A microstructure-based model for describing strain softening during compression of Al-30%wt Zn alloy

    No full text
    A microstructural-based model, describing the plastic behavior of Al-30wt% Zn alloy, is proposed and the effect of solid solution decomposition, Orowan looping, twinning and grain refinement is analyzed. It is assumed that the plastic deformation process is dominated by strain-induced solute diffusion and dislocation motion. To capture the essential physics, a law describing the evolution of the mean free path of dislocations with plastic strain is proposed which reproduces the experimentally observed strain softening
    corecore