2,041 research outputs found

    Hall effect of quasi-hole gas in organic single-crystal transistors

    Full text link
    Hall effect is detected in organic field-effect transistors, using appropriately shaped rubrene (C42H28) single crystals. It turned out that inverse Hall coefficient, having a positive sign, is close to the amount of electric-field induced charge upon the hole accumulation. The presence of the normal Hall effect means that the electromagnetic character of the surface charge is not of hopping carriers but resembles that of a two-dimensional hole-gas system

    Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems

    Full text link
    This paper clarifies the microscopic nature of the staggered scalar order, which is specific to even number of f electrons per site. In such systems, crystalline electric field (CEF) can make a singlet ground state. As exchange interaction with conduction electrons increases, the CEF singlet at each site gives way to Kondo singlets. The collective Kondo singlets are identified with itinerant states that form energy bands. Near the boundary of itinerant and localized states, a new type of electronic order appears with staggered Kondo and CEF singlets. We present a phenomenological three-state model that qualitatively reproduces the characteristic phase diagram, which have been obtained numerically with use of the continuous-time quantum Monte Carlo combined with the dynamical mean-field theory. The scalar order observed in PrFe_4P_{12} is ascribed to this staggered order accompanying charge density wave (CDW) of conduction electrons. Accurate photoemission and tunneling spectroscopy should be able to probe sharp peaks below and above the Fermi level in the ordered phase.Comment: 7 pages, 8 figure

    A non-metrizable collectionwise Hausdorff tree with no uncountable chains and no Aronszajn subtrees

    Get PDF
    summary:It is independent of the usual (ZFC) axioms of set theory whether every collectionwise Hausdorff tree is either metrizable or has an uncountable chain. We show that even if we add ``or has an Aronszajn subtree,'' the statement remains ZFC-independent. This is done by constructing a tree as in the title, using the set-theoretic hypothesis ♱∗\diamondsuit^*, which holds in Gödel's Constructible Universe

    Solution of reduced equations derived with singular perturbation methods

    Full text link
    For singular perturbation problems in dynamical systems, various appropriate singular perturbation methods have been proposed to eliminate secular terms appearing in the naive expansion. For example, the method of multiple time scales, the normal form method, center manifold theory, the renormalization group method are well known. In this paper, it is shown that all of the solutions of the reduced equations constructed with those methods are exactly equal to sum of the most divergent secular terms appearing in the naive expansion. For the proof, a method to construct a perturbation solution which differs from the conventional one is presented, where we make use of the theory of Lie symmetry group.Comment: To be published in Phys. Rev.

    Microscopic Mechanism for Staggered Scalar Order in PrFe4P12

    Full text link
    A microscopic model is proposed for the scalar order in PrFe4P12 where f2 crystalline electric field (CEF) singlet and triplet states interact with two conduction bands. By combining the dynamical mean-field theory and the continuous-time quantum Monte Carlo, we obtain an electronic order with staggered Kondo and CEF singlets with the total conduction number being unity per site. The ground state becomes semimetallic provided that the two conduction bands have different occupation numbers. This model naturally explains experimentally observed properties in the ordered phase of PrFe4P12 such as the scalar order parameter, temperature dependence of the resistivity, field-induced staggered moment, and inelastic features in neutron scattering. The Kondo effect plays an essential role for ordering, in strong contrast with ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure

    A Field Effect Transitor based on the Mott Transition in a Molecular Layer

    Full text link
    Here we propose and analyze the behavior of a FET--like switching device, the Mott transition field effect transistor, operating on a novel principle, the Mott metal--insulator transition. The device has FET-like characteristics with a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is feasible down to nanoscale dimensions. Implementation with a class of organic charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Charge transfer excitons in optical absorption spectra of C60-dimers and polymers

    Full text link
    Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.Comment: Figures should be requested to the autho

    On the origin of multiple ordered phases in PrFe4P12

    Full text link
    The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively provided (i) ferro-type interactions are introduced between the dipoles as well as between the octupoles of localized f-electrons, and (ii) separation is vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric field (CEF) levels. The high-field phase can have either the same ordering vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on the parameters. In the latter case, distortion of the crystal perpendicular to the (111) axis is predicted. The corresponding anomaly in elastic constants should also appear. The electrical resistivity is calculated with account of scattering within the CEF quasi-quartet. It is found that the resistivity as a function of the direction of magnetic field shows a sharp maximum around the (111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure
    • 

    corecore