630 research outputs found

    Stability of Spinmotive Force in Perpendicularly Magnetized Nanowires under High Magnetic Fields

    Full text link
    Spinmotive force induced by domain wall motion in perpendicularly magnetized nanowires is numerically demonstrated. We show that using nanowires with large magnetic anisotropy can lead to a high stability of spinmotive force under strong magnetic fields. We observe spinmotive force in the order of tens of microvolt in a multilayered Co/Ni nanowire and in the order of several hundred microvolt in a FePt nanowire; the latter is two orders of magnitude greater than that in permalloy nanowires reported previously. The narrow structure and low mobility of a domain wall under magnetic fields in perpendicularly magnetized nanowires permits downsizing of spinmotive force devices.Comment: submitted to Applied Physics Letter

    Exact Analysis of Soliton Dynamics in Spinor Bose-Einstein Condensates

    Full text link
    We propose an integrable model of a multicomponent spinor Bose-Einstein condensate in one dimension, which allows an exact description of the dynamics of bright solitons with spin degrees of freedom. We consider specifically an atomic condensate in the F=1 hyperfine state confined by an optical dipole trap. When the mean-field interaction is attractive (c_0 < 0) and the spin-exchange interaction of a spinor condensate is ferromagnetic (c_2 < 0), we prove that the system possesses a completely integrable point leading to the existence of multiple bright solitons. By applying results from the inverse scattering method, we analyze a collision law for two-soliton solutions and find that the dynamics can be explained in terms of the spin precession.Comment: 4 pages, 2 figure

    One-Dimensional Integrable Spinor BECs Mapped to Matrix Nonlinear Schr\"odinger Equation and Solution of Bogoliubov Equation in These Systems

    Full text link
    In this short note, we construct mappings from one-dimensional integrable spinor BECs to matrix nonlinear Schr\"odinger equation, and solve the Bogoliubov equation of these systems. A map of spin-nn BEC is constructed from the 2n2^n-dimensional spinor representation of irreducible tensor operators of so(2n+1)so(2n+1). Solutions of Bogoliubov equation are obtained with the aid of the theory of squared Jost functions.Comment: 2.1 pages, JPSJ shortnote style. Published version. Note and reference adde

    Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates

    Full text link
    We study soliton solutions for the Gross--Pitaevskii equation of the spinor Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses are made in two ways: by assuming single-mode amplitudes and by generalizing Hirota's direct method for multi-components. We obtain one-solitons of single-peak type in the ferromagnetic, polar and cyclic states, respectively. Moreover, twin-peak type solitons both in the ferromagnetic and the polar state are found.Comment: 15 pages, 8 figure

    Transmission and Reflection of Collective Modes in Spin-1 Bose-Einstein Condensate

    Full text link
    We study tunneling properties of collective excitations in spin-1 Bose-Einstein condensates. In the absence of magnetic fields, the total transmission in the long wavelength limit occurs in all kinds of excitations but the quadrupolar spin mode in the ferromagnetic state. The quadrupolar spin mode alone shows the total reflection. A difference between those excitations comes from whether the wavefunction of an excitation corresponds to that of the condensate in the long wavelength limit. The correspondence results in the total transmission as in the spinless BEC.Comment: 6 pages, 5 figure

    Electrically tunable spin injector free from the impedance mismatch problem

    Get PDF
    Injection of spin currents into solids is crucial for exploring spin physics and spintronics. There has been significant progress in recent years in spin injection into high-resistivity materials, for example, semiconductors and organic materials, which uses tunnel barriers to circumvent the impedance mismatch problem; the impedance mismatch between ferromagnetic metals and high-resistivity materials drastically limits the spin-injection efficiency. However, because of this problem, there is no route for spin injection into these materials through low-resistivity interfaces, that is, Ohmic contacts, even though this promises an easy and versatile pathway for spin injection without the need for growing high-quality tunnel barriers. Here we show experimental evidence that spin pumping enables spin injection free from this condition; room-temperature spin injection into GaAs from Ni81Fe19 through an Ohmic contact is demonstrated through dynamical spin exchange. Furthermore, we demonstrate that this exchange can be controlled electrically by applying a bias voltage across a Ni81Fe19/GaAs interface, enabling electric tuning of the spin-pumping efficiency

    Simultaneous ground and satellite observations of an isolated proton arc at subauroral latitudes

    Get PDF
    We observed an isolated proton arc at the Athabasca station MLAT: 62◦N) in Canada on 5 September, 2005, using a ground-based allsky imager at wavelengths of 557.7 nm, 630.0 nm, and 486.1 nm (Hβ). This arc is similar to the detached proton arc observed recently by the IMAGE satellite [Immel et al., 2002]. The arc appeared at 0500-0700 UT (2100-2300 MLT) coincident with strong Pc 1 geomagnetic pulsations in the frequency range of the electromagnetic ion cyclotron (EMIC) wave. A small substorm took place at 0550 UT, while the isolated arc did not change its structure and intensity before and after the substorm onset. From particle data obtained by the NOAA 17 satellite, we found that the isolated arc was located in the localized (L ∼4) enhancement of ion precipitation fluxes at an energy range of 30-80 keV. Trapped ion flux enhancements (ring current ions) were also observed at two latitudinally separated regions. The localized ion precipitation was located at the outer boundary of the inner ring current ions. The DMSP F13 satellite observed signatures of ionospheric plasma trough near the conjugate point of the arc in the southern hemisphere. The trough is considered to be connected to the plasmapause. These results indicate that the source region of the isolated arc was located near the plasmapause and in the ring current. We conclude that the observed isolated proton arc at subauroral latitudes were driven by the EMIC waves, which were generated near the plasmapause and scattered the ring current protons resonantly into the loss cone

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information
    • …
    corecore