26,620 research outputs found
Evolution: Complexity, uncertainty and innovation
Complexity science provides a general mathematical basis for evolutionary thinking. It makes us face the inherent, irreducible nature of uncertainty and the limits to knowledge and prediction. Complex, evolutionary systems work on the basis of on-going, continuous internal processes of exploration, experimentation and innovation at their underlying levels. This is acted upon by the level above, leading to a selection process on the lower levels and a probing of the stability of the level above. This could either be an organizational level above, or the potential market place. Models aimed at predicting system behaviour therefore consist of assumptions of constraints on the micro-level – and because of inertia or conformity may be approximately true for some unspecified time. However, systems without strong mechanisms of repression and conformity will evolve, innovate and change, creating new emergent structures, capabilities and characteristics. Systems with no individual freedom at their lower levels will have predictable behaviour in the short term – but will not survive in the long term. Creative, innovative, evolving systems, on the other hand, will more probably survive over longer times, but will not have predictable characteristics or behaviour. These minimal mechanisms are all that are required to explain (though not predict) the co-evolutionary processes occurring in markets, organizations, and indeed in emergent, evolutionary communities of practice. Some examples will be presented briefly
The Multispectral Microscopic Imager: Integrating Microimaging with Spectroscopy for the In-Situ Exploration of the Moon
To maximize the scientific return, future robotic and human missions to the Moon will need to have in-situ capabilities to enable the selection of the highest value samples for returning to Earth, or a lunar base for analysis. In order to accomplish this task efficiently, samples will need to be characterized using a suite of robotic instruments that can provide crucial information about elemental composition, mineralogy, volatiles and ices. Such spatially-correlated data sets, which place mineralogy into a microtextural context, are considered crucial for correct petrogenetic interpretations. . Combining microscopic imaging with visible= nearinfrared reflectance spectroscopy, provides a powerful in-situ approach for obtaining mineralogy within a microtextural context. The approach is non-destructive and requires minimal mechanical sample preparation. This approach provides data sets that are comparable to what geologists routinely acquire in the field, using a hand lens and in the lab using thin section petrography, and provide essential information for interpreting the primary formational processes in rocks and soils as well as the effects of secondary (diagenetic) alteration processes. Such observations lay a foundation for inferring geologic histories and provide "ground truth" for similar instruments on orbiting satellites; they support astronaut EVA activities and provide basic information about the physical properties of soils required for assessing associated health risks, and are basic tools in the exploration for in-situ resources to support human exploration of the Moon
An improved solar wind electron-density model for pulsar timing
Variations in the solar wind density introduce variable delays into pulsar
timing observations. Current pulsar timing analysis programs only implement
simple models of the solar wind, which not only limit the timing accuracy, but
can also affect measurements of pulsar rotational, astrometric and orbital
parameters. We describe a new model of the solar wind electron density content
which uses observations from the Wilcox Solar Observatory of the solar magnetic
field. We have implemented this model into the tempo2 pulsar timing package. We
show that this model is more accurate than previous models and that these
corrections are necessary for high precision pulsar timing applications.Comment: Accepted by ApJ, 13 pages, 4 figure
Neutrino Electron Scattering and Electroweak Gauge Structure: Future Tests
Low-energy high-resolution neutrino-electron scattering experiments may play
an important role in testing the gauge structure of the electroweak
interaction. We propose the use of radioactive neutrino sources (e.g.
Cr) in underground experiments such as BOREXINO, HELLAZ and LAMA. As an
illustration, we display the sensitivity of these detectors in testing the
possible existence of extra neutral gauge bosons, both in the framework of E_6
models and of models with left-right symmetry.Comment: 22 pages, revtex, 4 figures included, accepted for publication in
Phys. Rev.
Entanglement by linear SU(2) transformations: generation and evolution of quantum vortex states
We consider the evolution of a two-mode system of bosons under the action of
a Hamiltonian that generates linear SU(2) transformations. The Hamiltonian is
generic in that it represents a host of entanglement mechanisms, which can thus
be treated in a unified way. We start by solving the quantum dynamics
analytically when the system is initially in a Fock state. We show how the two
modes get entangled by evolution to produce a coherent superposition of vortex
states in general, and a single vortex state under certain conditions. The
degree of entanglement between the modes is measured by finding the explicit
analytical dependence of the Von Neumann entropy on the system parameters. The
reduced state of each mode is analyzed by means of its correlation function and
spatial coherence function. Remarkably, our analysis is shown to be equally as
valid for a variety of initial states that can be prepared from a two-mode Fock
state via a unitary transformation and for which the results can be obtained by
mere inspection of the corresponding results for an initial Fock state. As an
example, we consider a quantum vortex as the initial state and also find
conditions for its revival and charge conjugation. While studying the evolution
of the initial vortex state, we have encountered and explained an interesting
situation in which the entropy of the system does not evolve whereas its wave
function does. Although the modal concept has been used throughout the paper,
it is important to note that the theory is equally applicable for a
two-particle system in which each particle is represented by its bosonic
creation and annihilation operators.Comment: 6 figure
Problems and Aspects of Energy-Driven Wavefunction Collapse Models
Four problematic circumstances are considered, involving models which
describe dynamical wavefunction collapse toward energy eigenstates, for which
it is shown that wavefunction collapse of macroscopic objects does not work
properly. In one case, a common particle position measuring situation, the
apparatus evolves to a superposition of macroscopically distinguishable states
(does not collapse to one of them as it should) because each such
particle/apparatus/environment state has precisely the same energy spectrum.
Second, assuming an experiment takes place involving collapse to one of two
possible outcomes which is permanently recorded, it is shown in general that
this can only happen in the unlikely case that the two apparatus states
corresponding to the two outcomes have disjoint energy spectra. Next, the
progressive narrowing of the energy spectrum due to the collapse mechanism is
considered. This has the effect of broadening the time evolution of objects as
the universe evolves. Two examples, one involving a precessing spin, the other
involving creation of an excited state followed by its decay, are presented in
the form of paradoxes. In both examples, the microscopic behavior predicted by
standard quantum theory is significantly altered under energy-driven collapse,
but this alteration is not observed by an apparatus when it is included in the
quantum description. The resolution involves recognition that the statevector
describing the apparatus does not collapse, but evolves to a superposition of
macroscopically different states.Comment: 17 page
Nonequilibrium Electron Interactions in Metal Films
Ultrafast relaxation dynamics of an athermal electron distribution is
investigated in silver films using a femtosecond pump-probe technique with 18
fs pulses in off-resonant conditions. The results yield evidence for an
increase with time of the electron-gas energy loss rate to the lattice and of
the free electron damping during the early stages of the electron-gas
thermalization. These effects are attributed to transient alterations of the
electron average scattering processes due to the athermal nature of the
electron gas, in agreement with numerical simulations
The Properties of Poor Groups of Galaxies: II. X-ray and Optical Comparisons
We use ROSAT PSPC data to study the X-ray properties of a sample of twelve
poor groups that have extensive membership information (Zabludoff and Mulchaey
1997; Paper I). Diffuse X-ray emission is detected in nine of these groups. In
all but one of the X-ray detected groups, the X-ray emission is centered on a
luminous elliptical galaxy. Fits to the surface brightness profiles of the
X-ray emission suggest the presence of two X-ray components in these groups.
The first component is centered on the central elliptical galaxy. The location
and extent of this component, combined with its X-ray temperature and
luminosity, favor an origin in the interstellar medium of the central galaxy.
Alternatively, the central component may be the result of a large-scale cooling
flow. The second X-ray component is detected out to a radius of at least
100-300 kpc. This component follows the same relationships found among the
X-ray temperature, X-ray luminosity and optical velocity dispersion of rich
clusters. This result suggests that the X-ray detected groups are low-mass
versions of clusters and that the extended gas component can properly be called
the intragroup medium, in analogy to the intracluster medium in clusters. We
also find a trend for the position angle of the optical light in the central
elliptical galaxy to align with the position angle of the large-scale X-ray
emission. (Abridged)Comment: 38 pages, AASLaTeX with 16 PS figures. Figure 1a-1l available in
gzipped postscript format at ftp://corvus.ociw.edu/pub/mulchae
Measurement of electron-neutrino electron elastic scattering
The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was
measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest
nu_e beam at the Los Alamos Neutron Science Center. The standard model of
electroweak physics predicts a large destructive interference between the
charge current and neutral current channels for this reaction. The measured
cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e}
(MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The
measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +-
0.12(syst.), is in good agreement with the standard model expectation of
I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents.
An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr}
is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.Comment: 22 pages, 11 figure
- …