202 research outputs found
Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction
A simple approximate expression in real and reciprocal spaces is given for
the static exchange-correlation kernel of a uniform electron gas interacting
with the long-range part only of the Coulomb interaction. This expression
interpolates between the exact asymptotic behaviors of this kernel at small and
large wave vectors which in turn requires, among other thing, information from
the momentum distribution of the uniform electron gas with the same interaction
that have been calculated in the G0W0 approximation. This exchange-correlation
kernel as well as its complement analogue associated to the short-range part of
the Coulomb interaction are more local than the Coulombic exchange-correlation
kernel and constitute potential ingredients in approximations for recent
adiabatic connection fluctuation-dissipation and/or density functional theory
approaches of the electronic correlation problem based on a separate treatment
of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.
The influence of local field corrections on Thomson scattering in non-ideal two-component plasmas
Thomson scattering in non-ideal (collision-dominated) two-component plasmas
is calculated accounting for electron-ion collisions as well as
electron-electron correlations. This is achieved by using a novel interpolation
scheme for the electron-electron response function generalizing the traditional
Mermin approach. Also, ions are treated as randomly distributed inert
scattering centers. The collision frequency is taken as a dynamic and complex
quantity and is calculated from a microscopic quantum-statistical approach.
Implications due to different approximations for the electron-electron
correlation, i.e. different forms of the OCP local field correction, are
discussed
Structure of the Local-field factor of the 2-D electron fluid. Possible evidence for correlated scattering of electron pairs
The static local-field factor (LFF) of the 2-D electron fluid is calculated
{\it nonperturbatively} using a mapping to a classical Coulomb fluid
Phys. Rev. Lett., {\bf 87}, 206. The LFF for the paramagnetic
fluid {\it differs markedly} from perturbation theory where a maximum near
2 is expected. Our LFF has a quasi-linear small-k region leading to a
maximum close to 3, in agreent with currently available quantum Monte
Carlo data. The structure in the LFF and its dependence on the density and
temperature are interpretted as a signature of correlated scattering of
electron pairs of opposite spin.The lack of structure at implies
weakened Friedel oscillations, Kohn anomalies etc.Comment: 4 pages, 3 figures, version 2 of condmat/0304034, see
http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc/ Changs in the text, figure 2
and updated reference
Kirzhnits gradient expansion for a D-dimensional Fermi gas
For an ideal D-dimensional Fermi gas under generic external confinement we
derive the correcting coefficient of the von Weizsacker term in the
kinetic energy density. To obtain this coefficient we use the Kirzhnits
semiclassical expansion of the number operator up to the second order in the
Planck constant . Within this simple and direct approach we determine
the differential equation of the density profile and the density functional of
the Fermi gas. In the case D=2 we find that the Kirzhnits gradient corrections
vanish to all order in .Comment: 6 pages, 0 figures, accepted for publication in J. Phys. A: Math.
Theo
Faint calcium-rich transient from the double-detonation of a carbon-oxygen white dwarf star
We have computed a three-dimensional hydrodynamic simulation of the merger
between a massive () helium white dwarf (He WD) and a low-mass
() carbon-oxygen white dwarf (CO WD). Despite the low mass of the
primary, the merger triggers a thermonuclear explosion as a result of a double
detonation, producing a faint transient and leaving no remnant behind. This
type of event could also take place during common-envelope mergers whenever the
companion is a CO WD and the core of the giant star has a sufficiently large He
mass. The spectra show strong Ca lines throughout the first few weeks after the
explosion. The explosion only yields of Ni, resulting
in a low-luminosity SN Ia-like lightcurve that resembles the Ca-rich transients
within this broad class of objects, with a peak magnitude of mag and a rather slow decline rate of mag. Both, its lightcurve-shape and spectral
appearance, resemble the appearance of Ca-rich transients, suggesting such
mergers as a possible progenitor scenario for this class of events.Comment: Submitted to A&A letters, posted on ArXiv after positive referee
report. 7 pages, 4 figure
Nonlocal density functionals and the linear response of the homogeneous electron gas
The known and usable truly nonlocal functionals for exchange-correlation
energy of the inhomogeneous electron gas are the ADA (average density
approximation) and the WDA (weighted density approximation). ADA, by design,
yields the correct linear response function of the uniform electron gas. WDA is
constructed so that it is exact in the limit of one-electron systems. We derive
an expression for the linear response of the uniform gas in the WDA, and
calculate it for several flavors of WDA. We then compare the results with the
Monte-Carlo data on the exchange-correlation local field correction, and
identify the weak points of conventional WDA in the homogeneous limit. We
suggest how the WDA can be modified to improve the response function. The
resulting approximation is a good one in both opposite limits, and should be
useful for practical nonlocal density functional calculations.Comment: 4 pages, two eps figures embedde
Polarizational stopping power of heavy-ion diclusters in two-dimensional electron liquids
The in-plane polarizational stopping power of heavy-ion diclusters in a
two-dimensional strongly coupled electron liquid is studied. Analytical
expressions for the stopping power of both fast and slow projectiles are
derived. To go beyond the random-phase approximation we make use of the inverse
dielectric function obtained by means of the method of moments and some recent
analytical expressions for the static local-field correction factor.Comment: 9 pages, 5 figures. Published in Physical Review B
http://link.aps.org/abstract/PRB/v75/e11510
Dynamic Many-Body Theory. II. Dynamics of Strongly Correlated Fermi Fluids
We develop a systematic theory of multi-particle excitations in strongly
interacting Fermi systems. Our work is the generalization of the time-honored
work by Jackson, Feenberg, and Campbell for bosons, that provides, in its most
advanced implementation, quantitative predictions for the dynamic structure
function in the whole experimentally accessible energy/momentum regime. Our
view is that the same physical effects -- namely fluctuations of the wave
function at an atomic length scale -- are responsible for the correct
energetics of the excitations in both Bose and Fermi fluids. Besides a
comprehensive derivation of the fermion version of the theory and discussion of
the approximations made, we present results for homogeneous He-3 and electrons
in three dimensions. We find indeed a significant lowering of the zero sound
mode in He-3 and a broadening of the collective mode due to the coupling to
particle-hole excitations in good agreement with experiments. The most visible
effect in electronic systems is the appearance of a ``double-plasmon''
excitation.Comment: submitted to Phys. Rev.
Exact exchange potential evaluated solely from occupied Kohn-Sham and Hartree-Fock solutions
The reported new algorithm determines the exact exchange potential v_x in a
iterative way using energy and orbital shifts (ES, OS) obtained - with
finite-difference formulas - from the solutions (occupied orbitals and their
energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation,
the former used for the initial approximation to v_x and the latter - for
increments of ES and OS due to subsequent changes of v_x. Thus, solution of the
differential equations for OS, used by Kummel and Perdew (KP) [Phys. Rev. Lett.
90, 043004 (2003)], is avoided. The iterated exchange potential, expressed in
terms of ES and OS, is improved by modifying ES at odd iteration steps and OS
at even steps. The modification formulas are related to the OEP equation
(satisfied at convergence) written as the condition of vanishing density shift
(DS) - they are obtained, respectively, by enforcing its satisfaction through
corrections to approximate OS and by determining optimal ES that minimize the
DS norm. The proposed method, successfully tested for several closed-(sub)shell
atoms, from Be to Kr, within the DFT exchange-only approximation, proves highly
efficient. The calculations using pseudospectral method for representing
orbitals give iterative sequences of approximate exchange potentials (starting
with the Krieger-Li-Iafrate approximation) that rapidly approach the exact v_x
so that, for Ne, Ar and Zn, the corresponding DS norm becomes less than 10^{-6}
after 13, 13 and 9 iteration steps for a given electron density. In
self-consistent density calculations, orbital energies of 10^{-4} Hartree
accuracy are obtained for these atoms after, respectively, 9, 12 and 12 density
iteration steps, each involving just 2 steps of v_x iteration, while the
accuracy limit of 10^{-6}--10^{-7} Hartree is reached after 20 density
iterations.Comment: 21 pages, 5 figures, 3 table
Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics
Density-functional theory is applied to compute the ground-state energies of
quantum hard-sphere solids. The modified weighted-density approximation is used
to map both the Bose and the Fermi solid onto a corresponding uniform Bose
liquid, assuming negligible exchange for the Fermi solid. The required
liquid-state input data are obtained from a paired phonon analysis and the
Feynman approximation, connecting the static structure factor and the linear
response function. The Fermi liquid is treated by the Wu-Feenberg cluster
expansion, which approximately accounts for the effects of antisymmetry.
Liquid-solid transitions for both systems are obtained with no adjustment of
input data. Limited quantitative agreement with simulation indicates a need for
further improvement of the liquid-state input through practical alternatives to
the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte
- …