120 research outputs found

    The Morphology of Synovial Lining of Various Structures in Several Species as Observed with Scanning Electron Microscopy

    Get PDF
    Data concerning surface morphology of synovial lining of tendons, tendon sheaths, cruciate ligaments, infra-patellar fat pads and peripatellar synovial ridges in various species (rat, rabbit, dwarf goat, sheep, pig, dog, human) are reported on. Supportive studies with transmission electron microscopy (TEM) and light microscopy were performed. Three principal morphological appearances of the synovium are evident. On structures with a dense fibrous architecture like tendons, tendon sheaths and cruciate ligaments the intimal cells and processes are mostly slender and may tend to orientation in the length-axis of the structure. On the peri- and infrapatellar adipose tissues two principal \u27extremes\u27 are seen: one in which the contours of the fat cells are clearly visible with fungoid shaped structures in between them, and one in which the fat cell contours are not recognizable and the intima consists of cauliflower-like cells. Transitional forms exist. Several features observed on tendons and tendon sheaths which have not been reported on before are presented in this paper. A consistent classification of synovium is presented

    Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype

    Comparison of Two Porcine-Derived Materials for Repairing Abdominal Wall Defects in Rats

    Get PDF
    OBJECTIVE: The purpose of this study was to compare the mechanical properties, host responses and incorporation of porcine small intestine submucosa (PSIS) and porcine acellular dermal matrix (PADM) in a rat model of abdominal wall defect repair. MATERIALS AND METHODS: Prior to implantation, PSIS and PADM were prepared and evaluated in terms of structure and mechanical properties. Full-thickness abdominal wall defects were created in 50 Sprague-Dawley rats, and were repaired using either PSIS or PADM. Rats were sacrificed 1, 2, 4, 8 and 12 weeks post-repair and examined for herniation, infection, adhesions, contraction, and changes in the thickness and strength of the tissues incorporated at the defect sites. Histopathology and immunohistochemistry were performed to analyze inflammatory responses, collagen deposition and vascularization. RESULTS: PADM showed more dense collagen deposition and stronger mechanical properties than PSIS prior to implantation (P<0.01). However, the mechanical properties observed after integration with the surrounding native tissues was similar for PADM and PSIS. Both PADM and PSIS showed significant contraction by week 12. However, PADM tissue induced less adhesion and increased in thickness more slowly, and showed less infiltration by foreign giant cells, polymorphonuclear cells, and mononuclear cells. Improved remodeling of host tissue was observed after PSIS implantation, which was apparent from the orientation of bands of fibrous connective tissue, intermixed with newly formed blood vessels by Week 12. CONCLUSION: PSIS showed weaker mechanical properties prior to implantation. However, after implantation PSIS induced more pronounced host responses and showed better incorporation into host tissues than PADM

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    Development of functionally selective, small molecule agonists at kappa opioid receptors

    Get PDF
    The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects ofKORactivation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activateGprotein coupling but weakly recruitβarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo

    A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study

    Get PDF
    Background: This study aims to investigate, utilising micro-computed tomography (micro-CT) and histology, whether the topical application of nerve growth factor (NGF) and/or epidermal growth factor (EGF) can enhance periodontal, alveolar bone, root and pulpal tissue regeneration while minimising the risk of pulpal necrosis, root resorption and ankylosis of replanted molars in a rat model. Methods: Twelve four-week-old male Sprague-Dawley rats were divided into four groups: sham, collagen, EGF and NGF. The maxillary right first molar was elevated and replanted with or without a collagen membrane impregnated with either the growth factors EGF or NGF, or a saline solution. Four weeks after replantation, the animals were sacrificed and the posterior maxilla was assessed using histological and micro-CT analysis. The maxillary left first molar served as the control for the corresponding right first molar. Results: Micro-CT analysis revealed a tendency for all replanted molars to have reduced root length, root volume, alveolar bone height and inter-radicular alveolar bone volume. It appears that the use of the collagen membrane had a negative effect while no positive effect was noted with the incorporation of EGF or NGF. Histologically, the incorporation of the collagen membrane was found to negatively affect pulpal, root, periodontal and alveolar bone healing with pulpal inflammation and hard tissue formation, extensive root resorption and alveolar bone fragmentation. The incorporation of EGF and NGF did not improve root, periodontal or alveolar bone healing. However, EGF was found to improve pulp vascularisation while NGF improved pulpal architecture and cell organisation, although not to the level of the control group.Conclusions: Results indicate a possible benefit on pulpal vascularisation and pulpal cell organisation following the incorporation of EGF and NGF, respectively, into the alveolar socket of replanted molars in the rat model. No potential benefit of EGF and NGF was detected in periodontal or root healing, while the use of a collagen membrane carrier was found to have a negative effect on the healing response
    corecore