804 research outputs found

    The strengthening of reentrant pinning by collective interactions in the peak effect

    Full text link
    Since it was first observed about 40 years ago [1], the peak effect has been the subject of numerous research mainly impelled by the desire to determine its exact mechanisms. Despite these efforts, a consensus on this question has yet to be reached. Experimentally, the peak effect indicates a transition from a depinned vortex phase to a reentrant pinning phase at high magnetic field. To study the effects of intrinsic pinning on the peak effect, we consider Fex_{x}Ni1−x_{1-x}Zr2_{2} superconducting metallic glasses in which the vortex pinning force varies depending on the Fe content and in which a huge peak effect is seen as a function of magnetic field. The results are mapped out as a phase diagram in which it is readily seen that the peak effect becomes broader with decreasing pinning force. Typically, pinning can be understood by increased pinning centers, but here, we show that reentrant pinning is due to the strengthening of interactions (while decreasing pinning strength). Our results demonstrate the strengthening of the peak effect by collective effects.Comment: 4 pages, 4 figure

    Sprache in der Mache - Grammatikalisierung statt Grammatik

    Get PDF

    Localization Properties of the Periodic Random Anderson Model

    Full text link
    We consider diagonal disordered one-dimensional Anderson models with an underlying periodicity. We assume the simplest periodicity, i.e., we have essentially two lattices, one that is composed of the random potentials and the other of non-random potentials. Due to the periodicity special resonance energies appear, which are related to the lattice constant of the non-random lattice. Further on two different types of behaviors are observed at the resonance energies. When a random site is surrounded by non-random sites, this model exhibits extended states at the resonance energies, whereas otherwise all states are localized with, however, an increase of the localization length at these resonance energies. We study these resonance energies and evaluate the localization length and the density of states around these energies.Comment: 4 page
    • …
    corecore